Three-Dimensional Gait Analysis Synchronized with Surface Electromyography after Total Knee Arthroplasty - Comparison between Prosthesis Designs for Normal Knee Function and Conventional Total Knee Arthroplasty -

Kojiro Hyodo1, Akihiro Kanamori1, Hideki Kadone2, Masaya Kajiwara1, Norihito Arai1 Yu Taniguchi3, Tomokazu Yoshioka3, Masashi Yamazaki1

Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan1
Center for Innovative Medicine and Engineering, University of Tsukuba Hospital2
Division of Regenerative Medicine for Musculoskeletal System, Faculty of Medicine, University of Tsukuba3
Kojiro Hyodo, MD

• Part of co-presenter receives research founding from Smith & Nephew K K.
Introduction

Conventional TKA: non-anatomical surface
- Good long-term results
- Paradoxical motion
- Patient satisfaction ↓

Journey II: anatomical articular surface
(Smith & Nephew Inc., Memphis, TN)
- Good short-term results

- Normal-like kinematic patterns

• Poor results non-detectable by radiographic abnormalities

• Relation between quadriceps muscle weakness and poor results

→ Evaluation of muscle activation and kinematics

Objective

• Evaluation of the TKA prosthesis designed for normal knee using three-dimensional gait analysis synchronized with surface electromyogram

• Comparison between conventional TKA
Subjects

- Over-sixties, knee osteoarthritis, unilateral TKA, past 6 months

Prosthesis Designs for Normal Knee Journey Ⅱ: J-group (Smith & Nephew Inc., Memphis, TN): 3 cases

Conventional prosthesis Legion: L-group (Smith & Nephew Inc., Memphis, TN): 3 cases

<table>
<thead>
<tr>
<th></th>
<th>Age (years)</th>
<th>Sex (Male/Female)</th>
<th>Duration of postoperative (Months)</th>
<th>Knee angle (degrees)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>J-group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>①</td>
<td>66</td>
<td>F</td>
<td>17</td>
<td>118</td>
<td>0</td>
</tr>
<tr>
<td>②</td>
<td>73</td>
<td>F</td>
<td>6</td>
<td>140</td>
<td>0</td>
</tr>
<tr>
<td>③</td>
<td>62</td>
<td>F</td>
<td>7</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>L-group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>④</td>
<td>70</td>
<td>M</td>
<td>15</td>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>⑤</td>
<td>74</td>
<td>F</td>
<td>24</td>
<td>122</td>
<td>0</td>
</tr>
<tr>
<td>⑥</td>
<td>66</td>
<td>M</td>
<td>25</td>
<td>120</td>
<td>0</td>
</tr>
</tbody>
</table>
Methods

- Three-dimensional motion analyzer
 - Vicon Motion System Inc., Oxford, UK
 - 16 infrared cameras
 - Vicon Plug in gait model

- Wireless surface electrodes
 - Trigno Lab, Delsys, Inc., Boston, USA

Measurement of six muscles
- Vastus medialis (VM)
- Vastus lateralis (VL)
- Biceps femoris (BF)
- Rectus femoris (RF)
- Semitendinosus (ST)
- Gluteus medialis (GM)
Gait analysis

-10m walkway
-comfortable speed
-3 trials

Data analysis

- Knee angle (flexion-extension)
- %MVC of each muscles

Comparison between J-group and L-group
-Independent t-test
-P < 0.05
Both groups show double knee action. In J-group, knee flexion angle is high at initial stance phase.
Result: Surface electrodes

J-group showed greater Rectus femoris activity and lower hamstrings activity.
Discussion: Knee angle

J-group: Knee flexion angle is high at initial stance phase.

- After TKA, the knee flexion angle is low at initial stance phase.
- There was significant difference in knee flexion angle at initial stance phase between TKA group and control group.

L-group: Normal-like gait pattern

Operated side
Discussion: Surface electrodes

J-group: Rectus femoris activity ↑

Journey II positions femur at normal position compared with conventional TKA in the sagittal plane.

Journey II enhances the lever arm of the knee extensor mechanism, and this may have a positive effect on rectus femoris activity.
Discussion: Surface electrodes

L-group:
Rectus femoris activity ↓
Hamstrings activity ↑

Conventional TKA = ACL-deficient knee

- Quadriceps avoidance gait
 Decrease of quadriceps muscle activity during stance phase

- Greater hamstrings activity

Journey II: possibility for function of the ACL
Conclusions

• In Journey II, knee flexion angle is high at initial stance phase.

• Journey II may have a positive effect on rectus femoris activity, and possibility for function of the ACL.