The ability of isolated and combined ACL reconstruction and/or ‘monoloop’ lateral extra-articular tenodesis to restore intact knee laxity in the presence of isolated and combined injuries in-vitro.

K.C. Lagae, M.D.,
Antwerp Orthopaedic Centre Monica Hospitals, Antwerp, Belgium

J. Robberecht M.D., (Co-first author, Presenter)
Antwerp Orthopaedic Centre Monica Hospitals, Antwerp, Belgium
Department of Orthopaedic Surgery, Antwerp University Hospital (UZA)

K. K. Athwal PhD,
Biomechanics Group, Department of Mechanical Engineering, Imperial College, London, UK.

Prof. Verdonk P. M.D. PhD,
Professor or Orthopaedic Surgery, Antwerp Orthopaedic Centre Monica Hospitals
and Department of Orthopaedic Surgery, Antwerp University Hospital (UZA), Antwerp, Belgium

Prof Andrew A. Amis FREng, DSc(Eng), PhD,
Department of Mechanical Engineering, Imperial College London, London, UK.
Musculoskeletal Surgery Group, Imperial College London School of Medicine, Charing Cross Hospital, London, UK
Acknowledgements

Study
Supported by research grants paid by Smith & Nephew Endoscopy Co to Imperial College London. Smith & Nephew also lent surgical instruments and provided surgical consumables for the experiment.

K.C. Lagae, M.D.,
Consultant with Smith & Nephew

J. Robberecht M.D.,
No financial conflicts to disclose.

K. K. Athwal PhD,
Supported by research grants paid by Smith & Nephew Endoscopy Co to Imperial College London.

Prof. Verdonk P. M.D. PhD,
Consultant with Smith & Nephew, Depuy-Synthes, Active Implants, Cartiheal, Conmed

Prof Andrew A. Amis FREng, DSc(Eng), PhD,
Received research funding from Smith & Nephew and royalties from Smith& Nephew, Paid speaker for Smith & Nephew.
Study

• This controlled laboratory study examined
 • The influence on knee laxity after sequentially sectioning different structures
 • Anterior cruciate ligament (ACL)
 • Anterolateral ligament (ALL)
 • Harvesting a iliotibial band (ITB) midportion strip
 • Releasing the deep fibers of the ITB (Kaplan fibers)
 • The effect of the reconstructions on the laxity
 • ACL reconstruction alone, with hamstring tendon grafts
 • ACL reconstruction in combination with a ‘monoloop’ lateral extra-articular tenodesis
 • Isolated ‘Monoloop’ lateral extra-articular tenodesis without ACL reconstruction
'Monoloop’ lateral extra-aticular tenodesis

During the section phase a midportion ITB strip is harvested. The attachment to Gerdy’s tubercle is preserved (1) and an ITB strip of 10 x 150 mm is taken.

When performing the monoloop procedure, the tibia is locked in the initial neutral rotation at 60° of flexion, the ITB strip is routed deep to the LCL (2) and fixed with a 12 x 23 mm staple on the distal and posterior aspect of the femoral shaft, and proximal to the endobutton ACL fixation device on the lateral cortex of the femoral shaft (3).

Based upon a previous study, this tenodesis was fixed at an applied tension of 20 N ¹ (4)
Methods

• 12 cadaveric left knees
• Installed in a 6 degrees of freedom rig using an optical tracking system to record the kinematics through 0° to 100° of knee flexion with different forces applied
 • No load
 • Anterior drawer (90N)
 • Posterior drawer (90N)
 • External rotation (5Nm)
 • Internal rotation (5Nm)
 • Combined anterior drawer (90N) and internal rotation (5Nm).
• The knees were sequentially tested in intact state and the different states of injury and reconstructions
• Statistics
 • Two-way repeated-measures analyses of variance were used to compare the laxity data across knee states and flexion angles.
 • When differences were found between knee states, paired t tests with Bonferroni correction were performed.
Response to a 90-N anterior drawer force

- Cutting the ACL significantly increased anterior translation laxity by a mean of 4 to 7 mm compared to the intact knee at all flexion angles (p<0.01 from 0-90°, p=0.013 at 100°).

- Further sectioning of the ALL increased anterior translation laxity by <1 mm, significant at 20-30° knee flexion compared to the ACL-deficient knee (p<0.05).

- Harvesting the midportion ITB strip did not affect anterior translation laxity significantly.

- Additional sectioning of the deep ITB significantly increased anterior translation laxity by up to 3 mm, significant at 40° to 100° flexion compared to the ACL and ALL-deficient knee (p<0.05).

- After the cutting stages, the knees with combined soft-tissue damage were significantly more lax in tibial anterior translation than the intact knee, by 7 to 10 mm across 0 to 100° flexion (p<0.004).
Response to a 5-Nm internal torque

- Cutting the **ACL** did **not** increase tibial internal rotation laxity significantly compared to the intact knee at any flexion angle (mean changes 1° to 4°).

- Further sectioning of the **ALL** did **not** increase tibial internal rotation laxity significantly compared to either the intact knee or the ACL-deficient knee at any flexion angle, with mean changes <1°.

- Harvesting the **midportion ITB strip** increased tibial internal rotation laxity significantly when compared to the ACL plus ALL-deficient state at 90° and 100° flexion (mean changes <2°), and the knee was now significantly more lax than when intact across the range 20°-100° flexion.

- Additional *sectioning of the deep ITB* significantly increased internal rotation laxity at 20° to 100° flexion compared to the ACL and ALL-deficient knee (p<0.012), with a maximum mean change of 5° at 70° knee flexion.

- Thus, after the cutting stages, the knees with combined soft-tissue damage were significantly more lax in tibial internal rotation than the intact knee, across 10° – 100°, p<0.017, with mean laxity increases of 4° to 7°.
Response to combined anterior drawer and internal torque

Cutting the ACL significantly increased anterior translation laxity compared to the intact knee from 0-60° flexion (p<0.05), but did not increase internal rotation.

Cutting the ALL did not change either the anterior translation or internal rotation at any angle of knee flexion (p>0.05).

Sectioning the deep ITB significantly increased both anterior translation laxity and internal rotation at 20° to 100° and 30° to 100°, respectively (p<0.05) compared to the ACL and ALL-deficient knee.
Response to a 90-N anterior drawer force

• After isolated ACL reconstruction, anterior translation laxity did not differ significantly from the intact knee at any angle of knee flexion from 0 to 100° (p>0.053), with residual changes from 1 to 3mm.

• Addition of the ‘Monoloop’ lateral extra-articular tenodesis to the ACL reconstruction maintained anterior translation laxity that did not differ significantly (P> 0.085) from the intact values at all angles of knee flexion examined.

=> ACL + MONOLOOP restores normal anterior translation stability
Response to a 5-Nm internal torque

- After the isolated ACL reconstruction, significant differences remained in internal rotation at 30° to 100° knee flexion ($p<0.008$)

- With the combined ACL reconstruction plus Monoloop lateral extra-articular tenodesis, there were no significant differences in internal rotation compared to the intact knee. Thus, there was a significant decrease in internal rotation laxity after monoloop tenodesis compared to isolated ACL reconstruction at 20° to 100° knee flexion ($p<0.01$), and the combined procedure had not overconstrained the internal rotation compared to the intact knee at any angle of knee flexion.

- \[\text{=> ACL + MONOLOOP restores normal rotational stability}\]
Reconstruction states - Graphics

Tibial anterior translation in response to a 5-Nm internal torque combined with a 90-N anterior drawer force

Change of tibial internal rotation in response to a 5-Nm internal torque combined with a 90-N anterior drawer force

- After isolated ACL reconstruction there were still significant differences compared to the intact knee in anterior drawer at 30°-100° flexion (p<0.035) and internal rotation at 20°-100° flexion (p<0.042).

- With combined anterior drawer and internal torque, after additional Monoloop’ tenodesis no significant differences remained in anterior drawer or internal rotation compared to the intact knee.

- There was significant decrease in anterior laxity after adding the ‘Monoloop’ tenodesis compared to the isolated ACL reconstruction at 20°-80° flexion (p<0.027), and internal rotation at 20°-100° flexion (p<0.016).

- Without the ACL graft, the knee with an isolated monoloop lateral tenodesis remained significantly more lax in anterior translation than the native knee throughout 0-100° knee flexion (p<0.009) and in internal rotation from 30-100° (p<0.020).
Conclusion

• This study found that cutting the **deep fibers of the ITB** caused large increases in **tibial internal rotation laxity** across the range of knee flexion, while cutting the ALL did not.

• In case of an ACL deficiency combined with increased rotational laxity caused by cutting both the ALL and deep fibers of the ITB, an **ACL reconstruction alone** was insufficient to restore normal knee laxity.

• However, adding a ‘**Monoloop**’ lateral extra-articular tenodesis procedure restored the **normal knee laxity**.
References

