Title:
“The influence of femoral tunnel length on graft rupture after ACL reconstruction”

Authors:
Luiz Gabriel Betoni Guglielmetti, MD, PhD
Victor Marques de Oliveira, MD, PhD
Ricardo de Paula Leite Cury, MD, PhD
Nilson Roberto Severino, MD, PhD
Osmar Pedro Arbix de Camargo, MD, PhD
Fabrício Roberto Severino, MD
Marcos Mestriner, MD
Leandro Jun Aihara, MD
Alfredo dos Santos Netto, MD
The influence of femoral tunnel length on graft rupture after ACL reconstruction

Disclosures:
Luiz Gabriel Betoni Guglielmetti, MD, PhD
I have no financial conflicts to disclose
Victor Marques de Oliveira, MD, PhD
I have no financial conflicts to disclose
Ricardo de Paula Leite Cury, MD, PhD
I have no financial conflicts to disclose
Nilson Roberto Severino, MD, PhD
I have no financial conflicts to disclose
Osmar Pedro Arbix de Camargo, MD, PhD
I have no financial conflicts to disclose
Fabrício Roberto Severino, MD
I have no financial conflicts to disclose
Marcos Mestriner, MD
I have no financial conflicts to disclose
Leandro Jun Aihara, MD
I have no financial conflicts to disclose
Alfredo dos Santos Netto, MD
I have no financial conflicts to disclose
The influence of femoral tunnel length on graft rupture after ACL reconstruction

INTRODUCTION

• Transportal technique for ACL reconstruction creates short femoral tunnel.

 (Lubowitz; Arthroscopy 2009)

• The amount of graft within the tunnel for proper integration has not been defined yet.

• Studies on this subject have been performed in animal models.

 (Yuan F et al; Orthopedics 2013)

• **Objective:** retrospectively compare the incidence of new ruptures and the clinical outcomes (objective and subjective) of surgical patients with a short graft length within the femoral tunnel to those of patients with a longer graft length within this tunnel.
The influence of femoral tunnel length on graft rupture after ACL reconstruction

METHODS

• Observational study
• Cohort of 80 patients ➔ 9 dropouts ➔ 71 patients
• Graft: semitendinosus and gracilis
• Inclusion criteria:
 - unilateral ACL injury;
 - closed physis;
 - age < 40 years;
 - < 1 year since injury;
 - no previous surgery (except arthroscopic meniscectomy);
 - no severe degenerative changes;
 - no morbid obesity;
• Clinical evaluation: Lachman; pivot shift; anterior drawer; KT1000; Objective and subjective IKDC; Lysholm. Follow up: 2 years
The influence of femoral tunnel length on graft rupture after ACL reconstruction

METHODS

• Surgical technique:
 Transtibial technique and transportal technique, femoral fixation with ETD®, tibial fixation with interference screw.

• The length of the femoral tunnel was measured during the surgery, and the remaining amount of graft within the tunnel was calculated by subtracting the length of the ETD.

• The patients were categorized according to this measure as follows in order to compare clinical outcomes and the incidence of reruptures: patients with \(\leq 1.5 \) cm of graft within the tunnel versus patients with \(> 1.5 \) cm; \(\leq 2 \) versus \(> 2 \) cm; \(\leq 2.5 \) versus \(> 2.5 \) cm; and \(\leq 1.5 \) versus \(> 2.5 \) cm.
The influence of femoral tunnel length on graft rupture after ACL reconstruction

RESULTS

N: 71 patients (37 transportal technique and 34 transtibial technique).

Mean length of the femoral tunnels:
• transtibial: 4.98 cm $p<0.001$
• transportal: 3.99 cm

Mean length of the graft within the femoral tunnel:
• transtibial: 2.91 cm $p<0.001$
• transportal: 2.27 cm
The influence of femoral tunnel length on graft rupture after ACL reconstruction

RESULTS

Comparisons:

• Patients with ≤ 1.5 cm of graft within the tunnel \times patients with > 1.5 cm;
• Patients with ≤ 2 cm \times > 2 cm;
• Patients with ≤ 2.5 cm \times > 2.5 cm;
• Patients with ≤ 1.5 cm \times > 2.5 cm.

For total N: 71 and for transportal group: 37
The influence of femoral tunnel length on graft rupture after ACL reconstruction

RESULTS

Comparisons for total N: 71

- Patients with ≤ 1,5 cm of graft within the tunnel X patients with > 1,5 cm;
- Patients with ≤ 2 cm X > 2 cm;
- Patients with ≤ 2,5 cm X > 2,5 cm;
- Patients with ≤ 1,5 cm X > 2,5 cm.

Outcomes: rerupture, lachman anterior draw, pivot shift, KT-1000, Objective and Subjective IKDC and Lysholm: no significant difference

Except for patients with ≤ 2 cm X > 2 cm, lachman test (p = 0.025, Fisher Test)
The influence of femoral tunnel length on graft rupture after ACL reconstruction

RESULTS

Comparisons for transportal group: 37

- Patients with ≤ 1,5 cm of graft within the tunnel vs patients with > 1,5 cm;
- Patients with ≤ 2 cm vs > 2 cm;
- Patients with ≤ 2,5 cm vs > 2,5 cm;
- Patients with ≤ 1,5 cm vs > 2,5 cm.

Outcomes: rerupture, lachman anterior draw, pivot shift, KT-1000, Objective and Subjective IKDC and Lysholm: no significant difference
The influence of femoral tunnel length on graft rupture after ACL reconstruction

DISCUSSION

- The amount of graft within the tunnel was arbitrarily divided into groups for comparison.

- Small N:71, but few studies in literature, thus, an alternative approach was a retrospective analysis

- Few studies in humans with similar methodology

 Mariscalco et al; Eur Orthop Traumatol 2015
 Guglielmetti et al; J Orthopaed Traumatol 2017

- Animal models do not answer this question

 Yamazaki et al; Knee Surgery, Sport Traumatology, Arthroscopy: A 2006
 Hidalgo et al; Revista Española de Cirugía Ortopédica y Traumatología 2012
 Yuan et al; Orthopedics 2013
The amount of graft within the femoral tunnel was not a risk factor for knee instability or graft rerupture.

Limitations:

- Retrospective analysis
- N: small
- Few patients had a short graft length within the tunnel
- Two different ACL reconstruction techniques used

CONCLUSION
References

The influence of femoral tunnel length on graft rupture after ACL reconstruction

References