A Comprehensive Assessment of the effect of tibial slope on cruciate ligament reconstruction grafts: Tibial Slope Matters!

Andrew S. Bernhardson, MD, LCDR, MC, USN
Zachary S. Aman, BA, Nicholas DePhillipo, ATC, OTC,
Grant J. Dornan, MSc, Bryson Kemler BS, Hunter W. Storaci, MS, Alex Brady, MS, Gilberto Nakama, MD,
Robert F. LaPrade MD, PhD
Disclosures

I, Robert F. LaPrade, have relevant financial relationships to be discussed, directly or indirectly, referred to or illustrated with or without recognition within the presentation as follows:

- Editorial Boards for AJSM & KSSTA
- AOSSM Board
- Chair, AOSSM Research Committee
- Consultant: Arthrex, Smith & Nephew
- AOSSM Research Grant
- OREF Career Development Grant; OREF Clinical Research Award 2013
- Health East Norway Research Grant
- Minnesota Medical Foundation Grants
- AOSSM: Chair, Research Committee, AOSSM Board

The Steadman Philippon Research Institute is a 501(c)(3) non-profit institution supported financially by private donations and corporate support from the following entities:

- Smith & Nephew
- Arthrex, Inc.
- Siemens Medical Solutions USA, Inc.
- ConMed Linvatec
- Össur Americas
- Synthes
- Ceterix Orthopaedics, Inc.
- AANA
- University of Oslo
- The Steadman Clinic
- Vail Valley Medical Center
Background

- Posterior tibial slope varies (0-18°)
- Flat slope (Closer to 0°) can be protective for ACL, steep for PCL
- Increased slope can increase risk of ACL injury, but protective of PCL, and the converse is true
Background

- Increased rates of ACL failure noted for slopes >12° (Salmon AJSM 2017) – 5X higher failure rate

- Canine knee

- Load on cruciate grafts have not been studied in a biomechanical model with varied slope
Objective

• To determine the effect of sagittal plane tibial slope on cruciate graft forces in a biomechanical model
Methods

- 20 cadaveric knees
- Slope assessed on Fluoroscopy
- ACL group – 10 knees
- PCL group – 10 knees
- External Fixator
- Single bundle ACLR, DB PCLR
Methods

- Slopes: -2°-20° for ACL
- Knee flexion angles: 0°-60°
- Slopes: -2°-16° for PCL
- Knee flexion angles: 45°-90°
- Axial Load 200N for ACL, 300N
Results – ACL - PCLR

Tibial Slope Effect Plot

Flexion Effect Plot

Graft Effect Plot
Discussion

- ACL - Slope <6° was protective of the graft at all flexion angles

- Slope >12° had larger increases in graft loading across all flexion angles, converse true for PCL
Discussion

- **Slope**

 - possible risk factor in ACL injury and linked in PCL injury as risk factor

 definite ACL reconstruction failure risk factor and contributes to SB PCL failure

- Previously reported failure 5x greater with slope $>12^\circ$ for ACL
Discussion

- Treat slope in revision reconstruction?

- Target slope for a slope decreasing osteotomy <6° for ACL

- Potentially steeper more protective for PCL
Conclusions

• **ACL- Less than 6 degrees** slope saw minimal increases in force

• **ACL - Greater than 12 degrees** tibial slope sees graft load at all flexion angles

• Increased tibial slope leads to increased graft force in a linear fashion; DB PCL has lower loads across all slopes and also less PCL force at higher slopes