Inter-Rater Reliability of Measurement of TT-TG and Trochlear Morphology on MRI: The Effect of Axial Slice Selection

Corey Beals, MD
Nicholas Peters, MD
Walter Kim, MD
Nicholas A Early, MD
Scott T Shemory, MD
William K Vasileff, MD
David C. Flanigan, MD
Robert A. Magnussen MD, MPH

The Ohio State University
WEXNER MEDICAL CENTER

Department of Orthopaedics
OSU Sports Medicine Research Institute
Disclosures

- I, Robert A Magnussen have the following disclosures
 - Research support from Zimmer-Biomet
 - Educational support from Arthrex
 - Editorial Board
 - Orthopaedic Journal of Sports Medicine
 - Journal of the American Academy of Orthopaedic Surgeons
Introduction

• Patellar instability is a frequent cause of knee dysfunction in young active patients.
• Anatomic factors are felt to contribute to patellar instability and may influence treatment
 – Patellar Height
 – Tibial tubercle-trochlear groove (TT-TG) distance
 – Trochlear morphology (trochlear depth and sulcus angle)
• TT-TG distance and trochlear morphology are frequently assessed on axial MRI images
• We hypothesized that inter-rater reliability of these measures is good and that inter-rater variation is driven primarily by axial slice selection.
Methods – Slice Selection

• Six raters (two sports medicine fellowship-trained orthopaedic surgeons and four orthopaedic sports medicine fellows) reviewed axial MRI images from each patient

• Each rater was instructed to identify the femoral and axial slice that they would use to measure the TT-TG distance and measure trochlear morphology

• Raters were instructed to choose¹
 – The most proximal femoral axial slice on which the full width of the trochlea was covered with articular cartilage
 – The most proximal tibial axial slice on which attachment of the patellar tendon to the tibia was noted
Methods -

• Each rater measured and recorded the
 – TT-TG distance
 – Trochlear depth
 – Trochlear sulcus angle
 – Tibial and femoral slices utilized for the measurement

• Each rater then repeated the measurement using pre-selected femoral and tibial slices
Methods

• Inter-rater reliability was calculated by inter-class correlations (ICCs)
 – Femoral and tibial slice selection
 – TT-TG distance
 • With both independent and predetermined slice selection
 – Trochlear morphology measures
 • With both independent and predetermined slice selection
• Intra-rater reliability was assessed for three raters who repeated each measure
• Statistically significant differences (p < 0.05) in ICC based on slice selection were defined as those values without overlap of their 95% confidence internals.
Results – Inter-rater Reliability

• Inter-rater reliability was noted to be excellent (ICC \geq 0.80)

<table>
<thead>
<tr>
<th>Table 1 – Inter-Rater Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC (95% CI)</td>
</tr>
<tr>
<td>Predefined slices</td>
</tr>
<tr>
<td>Tibial Axial Slice</td>
</tr>
<tr>
<td>Femoral Axial Slice</td>
</tr>
<tr>
<td>TT-TG Distance</td>
</tr>
<tr>
<td>Sulcus Angle</td>
</tr>
<tr>
<td>Trochlear Depth</td>
</tr>
</tbody>
</table>

• Inter-rater reliability for sulcus angle was noted to be significantly improved (p < 0.05) with predetermined slice selection
Results – Range of Measurements

Mean range of measurements was noted to decrease with the use of predetermined slices

<table>
<thead>
<tr>
<th>Table 2: Mean Range of Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Independent Slice Selection</td>
</tr>
<tr>
<td>Mean Range</td>
</tr>
<tr>
<td>Tibial Axial Slice</td>
</tr>
<tr>
<td>Femoral Axial Slice</td>
</tr>
<tr>
<td>TT-TG Distance</td>
</tr>
<tr>
<td>Sulcus Angle</td>
</tr>
<tr>
<td>Trochlear Depth</td>
</tr>
</tbody>
</table>
Discussion

• Key findings:
 – Inter-rater reliability of MRI slice selection for quantitative measurements related to patellar instability are generally good
 – Improvement in slice agreement does improve the inter-rater reliability of *trochlear sulcus angle*

• The inter-rater reliability of trochlear depth remains only fair – even when variation due to slice selection is removed

• The inter-rater reliability of TT-TG distance was good regardless of whether independently selected or pre-selected MRI slices were used for measurement
 – Probably due to the relatively small effect of slice selection on the position of the trochlear groove
The effect of one slice

- Figure shows the effect of moving one slice distally of axial MRI, resulting in a 16 degrees change in sulcus angle but minimal change in trochlear groove position.
Discussion

• This method of axial femoral slice selection was described by Schottle et al1 and has been utilized by many other authors.

• Other methods have been described:
 – The “axial image with the greatest anterior–posterior diameter of both femoral condyles”2
 – The “image representing the best roman arch”3
 – The "image in which the trochlear groove appeared to be the deepest while remaining fully defined"4

• Further work is required to assess the impact of slice selection of measurements of interest utilizing variable techniques for slice selection.
Conclusion

- Inter-rater reliability of TT-TG distance is good and not highly dependent on slice selection on MRI
- Inter-rater reliability of trochlear morphology measures based on axial MRI slices and is fair
- Inter-rater variation can be reduced in the case of sulcus angle through improved agreement on slice selection
References

