The Role of Lateral Meniscus and Anterolateral Structure Injury on Rotatory Laxity in the Anterior Cruciate Ligament Deficient Knee

Munehiro Ogawa, Kensuke Okamura, Yusuke Inagaki, Yasuhito Tanaka

Nara Medical University, Japan
Declaration of Interest

2019 ISAKOS Congress
International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine

COI Disclosure Information
Presenter: Munehiro Ogawa

I have no financial conflicts to disclose.
Introduction

- Anterior cruciate ligament (ACL) reconstruction is largely thought of as a successful procedure
 - Yasuda K et al. Arthroscopy 2004, 2006
- Meniscus and anterolateral structure (ALS) as a secondary restraint of patients with ACL injury is currently debated
 - unrepaired secondary stabilizers may be a cause for reconstruction failure.
 - Bedi A et al Knee Surg Sports Traumatol Arthrosc 2010
 - Sonnery-Cottet B et al Arthroscopy 2016
 - Claes S et al. J Anat 2013
- Residual pivot-shift after ACL reconstruction
 - 11～30%
 - crucial factor related to poor clinical outcome.
 - van Eck CF et al. Arthroscopy 2012
 - Ferreti A et al. Arthroscopy 2017
Introduction

- The pivot-shift test
 - identified as an important clinical examination
 - to assess dynamic rotatory knee laxity in anterior cruciate ligament (ACL) insufficient knee.
- However, this test is evaluated by examiners subjectively,
 - there has still not been an established quantitative evaluation
 - Electromagnetic tracking system
 - Navigation
 - Ishibashi Y et al. Arthroscopy 2009
- We developed a newly developed non-invasive measurement system
 - non-invasive
 - easy to handle measuring system
 - Inertial Sensor (Triaxial Accelerometer)
The purposes of this study

• To investigate the influence of concomitant lateral meniscus (LM) and ALS injuries on rotatory knee laxity in ACL deficient knee.
Material & Methods

• 6 cadaveric knees
 • No OA and history of knee injury
 • Whole body cadaver

• The rotatory laxity was quantified in different conditions of instability
 • ACL intact (Control)
 • Dissection of the ACL (A1)
 • ACL+LM (A2)
 • LM root cut arthroscopically
 • ACL+LM+ALS (A3)
 • Joint line level
 • Monaco E et al Knee Surg Sports Traumatol Arthrosc 2012
Material & Methods

• Evaluation
 • The standardized pivot-shift test was performed
 • The peak acceleration values during the pivot-shift test were measured
 • The pivot-shift test was also graded subjectively on the scale of 0–3 based on the IKDC criteria.
 • The relationship between quantitative values and grade of the pivot-shift test
Results 1

- The A1, A2 and A3 showed significant higher mean acceleration values than the control intact knees.
- The pivot shift was undetectable (grade 0) in all knees with control.
- A1 continued to be minor (grade 1) on the pivot shift with all six knees.
- A2 and A3 resulted in an increase in the grade of the pivot shift.
- High-grade rotatory knee laxity (pivot shift grade 2 to 3) were 0%, 66% and 83% in the conditions of A1, A2 and A3, respectively.

The A1, A2 and A3 showed significant higher mean acceleration values than the control intact knees.
The pivot shift was undetectable (grade 0) in all knees with control.
A1 continued to be minor (grade 1) on the pivot shift with all six knees.
A2 and A3 resulted in an increase in the grade of the pivot shift,
High-grade rotatory knee laxity (pivot shift grade 2 to 3) were 0%, 66% and 83% in the conditions of A1, A2 and A3, respectively.

High grade Pivot Shift (Grade II or III)

* * * P<0.01
* * P<0.05

<table>
<thead>
<tr>
<th>Control</th>
<th>ACL Cut</th>
<th>ACL+LM Cut</th>
<th>ACL+LM+ALS Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1(6)</td>
<td>G1(2)G2(4)</td>
<td>G1(1)G2(2)G3(3)</td>
<td></td>
</tr>
</tbody>
</table>
The relationship between quantitative values and grade of the pivot-shift test

- A moderate correlation between the peak acceleration values and grade of the pivot-shift test
- The subjective grading of the pivot-shift test correlated with objective quantification.

\[rs = 0.69, \ p < 0.01 \]
Discussion

• We investigated the influence of concomitant LM and ALS on rotatory knee laxity in ACL deficient knee in cadaver
• The present study has demonstrated that a newly developed non-invasive measurement system using inertial sensors was able to objectively identify and quantitatively assess the pivot shift phenomenon
• High-grade rotatory knee laxity (pivot shift grade 2 to 3) were the result of these concomitant injuries in ACL deficient knee.
• the subjective grading of the pivot shift test correlated with objective quantification.
Limitation

- This system may be useful for quantitative assessment of the pivot shift test.

- Validity of this device
 - Fixation of this device in the skin
 - Interobserver ICC(2,3)=0.79 (95%CI: 0.16-0.95)
 - Intraobserver ICC(1,3)=0.89 (95%CI: 0.71-0.96)

- Cadaveric cutting study
 - The role of this structure by its transection.
 - It is unclear how closely this mimics knee injuries encountered in clinical settings

- Further research is needed to develop clinical relevance of the quantitative pivot shift measurements system.
Conclusions

• The findings of this study demonstrated that an ACL injury associated with LM and ALS may predispose the knee to higher rotatory laxity.

• Careful assessment and proper treatment of injuries to these secondary stabilizers should be considered,
 • especially in knees with a high grade of the pivot-shift.

