Knee Lateral Extra-Articular Tenodesis Decreases In-Situ Force In The Anterior Cruciate Ligament

João V. Novaretti1,2, Justin W. Arner1, Calvin K. Chan1, Sene Polamalu1, Christopher D. Harner3, Richard E. Debski1, Bryson P. Lesniak1

1Orthopaedic Robotics Laboratory, Departments of Orthopaedic Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
2Orthopaedics and Traumatology Sports Center (CETE), Department of Orthopaedics and Traumatology, Paulista School of Medicine (EPM), Federal University of São Paulo, São Paulo, Brazil
3University of Texas Health Science Center, Houston, Texas, USA
João V. Novaretti, MD

I have no financial conflicts to disclose.
INTRODUCTION

- Rotatory knee instability may persist after ACLR
 - Injury to anterolateral knee structures?
 - Recent increase in LET procedures combined with ACLR

- Concerns about overconstraint after LET procedures
 - Effects on in-situ force in the ACL, anterolateral capsule (ALC) and LET graft?
Knee LET Decreases In-Situ Force in the ACL

OBJECTIVE

To quantify the effects of LET on in-situ forces in the ACL, ALC and LET graft
METHODS

- Nine fresh-frozen cadaveric knees
- Mean age: 66.4 years
- Robotic Testing System (MJT Model FRS2010)
- Two loading conditions:
 - 200 N compression with 134 N anterior load
 - 200 N compression with 7 Nm internal tibial rotation
Knee LET Decreases In-Situ Force in the ACL

METHODS

Anterolateral capsule (ALC) separated from surrounding tissue with three incisions.

2-cm-wide strip of ALC removed to simulate ALC deficiency.

LET performed utilizing a 6-mm semitendinosus graft.
METHODS

Knee States
- Intact
- ALC Separation
- ALC Deficient
- LET Procedure
- ALC Deficient
- ACL Deficient

Statistical Analysis
- ANOVA with post-hoc Bonferroni
- At 0°, 30°, 60° and 90° of knee flexion
- Wilcoxon signed rank test for non-normally distributed data
In-situ force in the ACL significantly decreased after LET compared to ALC deficiency by 43.4% at 60° and by 50.0% at 90°

No difference between intact and LET states ($P > .05$)
In-situ force in the LET graft was significantly higher than in the native ALC by 43.0% at 30º, by 122.0% at 60º and by 170.8% at 90º.
MAIN FINDINGS

- In-situ force in the ACL was significantly lower after LET when compared to ALC deficient state
 - In agreement with previous studies that observed reduction up to 43% of in-situ force in the ACL after modified Andrews LET
 - LET may proved protective effect to the ACL when the ALC is damaged
 - In-situ force in the ACL was not lower than intact knee – LET does not seem to add protection to the ACL when no damage to the ALC is present
MAIN FINDINGS

✓ In-situ force in the LET graft was significantly higher than in the native ALC

- May offload stresses on other structures, such as the ACL
- May overconstraint the knee after LET and increase pressure in the lateral compartment
CONCLUSION

LET reduces in-situ forces in the ACL in the setting of ALC injury possibly providing a protective effect to the ACL. In-situ force in the LET graft was significantly higher than in the native ALC, possibly offloading the ACL. Further clinical studies are needed to evaluate the mid- and long-term outcomes of LET for rotatory knee instability, specifically its effect on ACL graft rupture and other knee structures.
REFERENCES

