Anterior Cruciate Ligament Reconstruction With or Without Lateral Extra-articular Tenodesis: Functional Outcomes from the ISAKOS Sponsored STABILITY Study

R. McCormack4,5, A. Getgood1,2, C. Hewison6, A. Firth1, D. Bryant3, R. Litchfield1,2, M. Heard7, P. MacDonald8,9, T. Spalding10, P. Verdonk11,12, D. Peterson13, D. Bardana14, A. Rezansoff6, STABILITY Study Group

1Fowler Kennedy Sport Medicine Clinic; 2Department of Surgery, Schulich School of Medicine and Dentistry, Western University; 3School of Physical Therapy, Western University; 4Department of Orthopedics, University of British Columbia; 5New West Orthopaedic & Sports Medicine Centre; 6Department of Surgery, University of Calgary; 7Banff Sport Medicine; 8Department of Surgery, University of Manitoba; 9Pan Am Clinic; 10University Hospital Coventry and Warwickshire NHS Trust; 11Department of Physical Medicine and Orthopedics, Ghent University; 12Antwerp Orthopedic Center; 13Department of Surgery, McMaster University; 14Department of Surgery, Queen’s University; 15Department of Surgery, University of Calgary; 16University of Calgary Sport Medicine Centre.
Disclosures

• **Research Support**
 - Canadian Institute for Health Research (CIHR)
 - Canadian Foundation for Innovation (CFI)
 - ISAKOS/OREF
 - American Orthopedic Society for Sports Medicine (AOSSM)
 - Musculoskeletal Transplant Foundation
 - Arthritis Society
 - Ontario Research Fund
 - Smith & Nephew Inc.
 - Arthrex Inc.
 - Conmed Inc.
 - Depuy Synthes Inc.
 - Eupraxia Inc.
 - SBM Inc.

• **Editorial Board**
 - AJSM Social Media
 - Knee Surgery Sports Traumatology Arthroscopy

• **Consultant**
 - Smith & Nephew Inc.
 - Ossur Inc.
 - Collagen Solutions
 - Joint Restoration Foundation
 - Graymont Equipment Distribution
 - Olympus
Introduction

• Background
 – Anterior cruciate ligament reconstruction (ACLR) is complicated by high failure rates in young, active individuals
 – The addition of a lateral extra-articular tenodesis (LET) to ACLR has been proposed to improve rotational stability and reduce failure rates
 – It is not clear how the addition of a LET to ACLR affects functional recovery

• Purpose
 – To evaluate the effect of single-bundle hamstring tendon ACLR with LET on functional outcomes in young, active individuals at a high risk of re-injury

• Hypothesis
 – ACLR+LET results in better functional outcomes and reduces the risk of persistent rotational laxity compared to single-bundle ACLR alone in patients who are deemed as being at high risk of graft failure
Methods

• **Stability study**
 – A multicenter, randomized controlled trial
 – Conducted from January 2015 to April 2019
 – Young, active patients were randomly assigned to undergo either:

• **Inclusion criteria**
 – ACL deficient knee
 – Skeletally mature but ≤25 years of age
 – ≥2 of the following:
 • Competitive pivoting sport
 • Pivot shift ≥grade 2
 • Generalized ligamentous laxity (Beighton score ≥4)

• **Randomization**
 – Computer-generated in permuted blocks of 2 and 4
 – Web-based in the OR after confirming eligibility with arthroscopy
 – Stratified by surgeon, sex, and presence/absence of a meniscal repair changing rehab
 – Randomly assigned to ACLR alone or ACLR + LET in a 1:1 ratio
Primary outcome measure
- Limb Symmetry Index (LSI)
 - Calculation based on the average of four hop tests (single leg hop, 6m timed hop, triple hop, and crossover hop)

Secondary outcome measures
- Quadriceps Index (QI) and Hamstring Index (HTI)
 - Measured using a computerized isokinetic dynamometer
 - Alternating knee flexion and extension repetitions (3 each) using maximal concentric muscle actions at an angular velocity of 90°/s
- Lower Extremity Functional Scale (LEFS)
 - 20 questions assessing function on a 5-point Likert type scale
 - Overall score ranges from 0 (worst function) to 80 (best function)

Outcome assessment
- Baseline (preoperative) and 6, 12 and 24 months postoperative
Statistical Analysis

- **Sample size calculation**
 - Two-sided, type 1 error rate 5%
 - 80% power to detect a moderate effect size of half a standard deviation
 - Expected approximately 15% attrition
 - A total of 146 patients (72 patients/group) required

- **Statistical tests**
 - LSI
 - Independent t test
 - Isokinetic strength indices (QI and HTI)
 - ANCOVA, baseline strength measurement of uninvolved (non-operative) knee included as a covariate
 - LEFS scores
 - ANCOVA, baseline LEFS score included as a covariate
CONSORT Flow Diagram

Assessed for eligibility (n = 1033)

Excluded (n = 409)
- Declined to participate (n = 48)
- Deemed ineligible at screening (n = 301) or at surgery (n = 51)
- Study recruitment ended prior to surgery (n = 9)

Randomized (n = 624)

Participating in functional assessments (n = 356)

Allocated to ACLR alone (n = 180)

Analysed (n = 173)
- Excluded from analysis (n = 7)
 - Missed assessment (n = 2)
 - Unable to complete strength and hop testing (n = 5)

Analysed (n = 164)
- Excluded from analysis (n = 9)
 - Incomplete LEFS (n = 3)
 - Unable to complete strength and hop testing (n = 6)

Analysed (n = 151)
- Excluded from analysis (n = 13)
 - Unable to complete strength and hop testing (n = 10)
 - Incomplete LEFS (n = 1)
 - Overdue assessment (n = 2)

Allocated to ACLR + LET (n = 176)

Analysed (n = 172)
- Excluded from analysis (n = 4)
 - Missed assessment (n = 1)
 - Unable to complete strength and hop testing (n = 3)

Analysed (n = 164)
- Excluded from analysis (n = 8)
 - Incomplete LEFS (n = 3)
 - Unable to complete strength and hop testing (n = 5)

Analysed (n = 149)
- Excluded from analysis (n = 15)
 - Unable to complete strength and hop testing (n = 7)
 - Incomplete LEFS (n = 4)
 - Overdue assessment (n = 3)
Results – Patient Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>ACLR alone</th>
<th>ACLR + LET</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, (n) males (%)</td>
<td>79 (45.9)</td>
<td>75 (44.4)</td>
<td>0.77</td>
</tr>
<tr>
<td>Age, years (mean ± SD)</td>
<td>18.7 ± 3.2</td>
<td>19.0 ± 3.1</td>
<td>0.35</td>
</tr>
<tr>
<td>Height, cm (mean ± SD)</td>
<td>167.1 ± 33.1</td>
<td>170.1 ± 20.7</td>
<td>0.33</td>
</tr>
<tr>
<td>Weight, kg (mean ± SD)</td>
<td>71.9 ± 15.4</td>
<td>71.8 ± 14.7</td>
<td>0.98</td>
</tr>
<tr>
<td>BMI, kg/m² (mean ± S)</td>
<td>22.9 ± 5.7</td>
<td>23.8 ± 4.7</td>
<td>0.10</td>
</tr>
<tr>
<td>Beighton score, 0–9 (mean ± SD)</td>
<td>3.2 ± 2.6</td>
<td>3.0 ± 2.8</td>
<td>0.57</td>
</tr>
<tr>
<td>Time from injury to surgery, months (mean ± SD)</td>
<td>7.9 ± 18.8</td>
<td>9.2 ± 16.7</td>
<td>0.38</td>
</tr>
<tr>
<td>Operative limb, (n) dominant (%)</td>
<td>95 (55.2)</td>
<td>81 (47.9)</td>
<td>0.18</td>
</tr>
<tr>
<td>Mechanism of injury, (n) contact (%)</td>
<td>22 (17.6)</td>
<td>24 (19.8)</td>
<td>0.65</td>
</tr>
<tr>
<td>Sport played at time of injury, (n) (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soccer</td>
<td>47 (28.1)</td>
<td>78 (47.6)</td>
<td></td>
</tr>
<tr>
<td>Football</td>
<td>12 (7.2)</td>
<td>17 (10.4)</td>
<td></td>
</tr>
<tr>
<td>Gymnastics</td>
<td>34 (20.4)</td>
<td>17 (10.4)</td>
<td></td>
</tr>
<tr>
<td>Squash</td>
<td>14 (8.4)</td>
<td>12 (7.3)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>60 (35.9)</td>
<td>40 (24.4)</td>
<td></td>
</tr>
<tr>
<td>Smoking status, (n) (%)</td>
<td></td>
<td></td>
<td>0.57</td>
</tr>
<tr>
<td>Current smoker</td>
<td>4 (2.3)</td>
<td>2 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Ex-smoker</td>
<td>11 (6.4)</td>
<td>8 (4.7)</td>
<td></td>
</tr>
<tr>
<td>Non-smoker</td>
<td>157 (91.3)</td>
<td>159 (94.1)</td>
<td></td>
</tr>
<tr>
<td>Graft source, (n) (%)</td>
<td></td>
<td></td>
<td>0.54</td>
</tr>
<tr>
<td>Semi-tendinosis and gracilis</td>
<td>166 (96.5)</td>
<td>165 (97.6)</td>
<td></td>
</tr>
<tr>
<td>Semi-tendinosis</td>
<td>6 (3.5)</td>
<td>4 (2.4)</td>
<td></td>
</tr>
<tr>
<td>Graft diameter, mm (mean ± SD)</td>
<td>7.9 ± 0.7</td>
<td>7.8 ± 0.7</td>
<td>0.39</td>
</tr>
<tr>
<td>Meniscal pathology, (n) (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medial</td>
<td>76 (44.2)</td>
<td>86 (50.9)</td>
<td>0.22</td>
</tr>
<tr>
<td>Lateral</td>
<td>82 (47.7)</td>
<td>72 (42.6)</td>
<td>0.35</td>
</tr>
<tr>
<td>Both</td>
<td>33 (19.2)</td>
<td>39 (23.1)</td>
<td>0.38</td>
</tr>
<tr>
<td>Change in rehab due to meniscus repair, (n) (%)</td>
<td>14 (18.4)</td>
<td>19 (22.1)</td>
<td>0.84</td>
</tr>
<tr>
<td>Chondral defect, (n) (%)</td>
<td>30 (17.4)</td>
<td>24 (14.2)</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Results – *LSI*

- No significant differences between groups at 6, 12 or 24 months

<table>
<thead>
<tr>
<th>Time</th>
<th>ACLR alone (mean ± SE)</th>
<th>n</th>
<th>ACLR + LET (mean ± SE)</th>
<th>n</th>
<th>Mean difference (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months</td>
<td>91.0 ± 2.0</td>
<td>129</td>
<td>89.3 ± 2.1</td>
<td>126</td>
<td>1.7 (-4.0 to 7.4)</td>
<td>0.55</td>
</tr>
<tr>
<td>12 months</td>
<td>97.0 ± 0.4</td>
<td>134</td>
<td>96.2 ± 10.8</td>
<td>131</td>
<td>0.8 (-1.3 to 2.8)</td>
<td>0.45</td>
</tr>
<tr>
<td>24 months</td>
<td>98.7 ± 0.7</td>
<td>132</td>
<td>99.3 ± 0.4</td>
<td>131</td>
<td>-0.5 (-2.2 to 1.0)</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Results – *Isokinetic Strength*

- Significant differences in QI peak torque and average power at 6 months favoring ACLR alone → *Potential disruption to vastus lateralis during LET procedure?*
- No differences between groups at subsequent time points

<table>
<thead>
<tr>
<th>Strength measure (%)</th>
<th>ACLR alone (mean ± SE)</th>
<th>ACLR + LET (mean ± SE)</th>
<th>Mean difference* (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>QI peak torque</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>74.9 ± 2.2</td>
<td>75.2 ± 1.8</td>
<td>-0.3 (-5.8 to 5.3)</td>
<td>0.93</td>
</tr>
<tr>
<td>6 months</td>
<td>79.4 ± 1.6</td>
<td>74.3 ± 1.4</td>
<td>5.1 (0.5 to 9.6)</td>
<td>0.03</td>
</tr>
<tr>
<td>12 months</td>
<td>90.2 ± 1.4</td>
<td>86.9 ± 1.4</td>
<td>3.3 (-0.7 to 7.4)</td>
<td>0.11</td>
</tr>
<tr>
<td>24 months</td>
<td>90.5 ± 1.6</td>
<td>90.9 ± 1.5</td>
<td>-0.4 (-4.8 to 4.0)</td>
<td>0.87</td>
</tr>
<tr>
<td>QI average power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>76.9 ± 1.8</td>
<td>77.1 ± 1.9</td>
<td>-0.2 (-6.3 to 5.8)</td>
<td>0.94</td>
</tr>
<tr>
<td>6 months</td>
<td>81.0 ± 1.5</td>
<td>75.6 ± 1.5</td>
<td>5.4 (1.2 to 9.6)</td>
<td>0.01</td>
</tr>
<tr>
<td>12 months</td>
<td>89.9 ± 1.4</td>
<td>87.9 ± 1.4</td>
<td>2.0 (-2.0 to 6.0)</td>
<td>0.32</td>
</tr>
<tr>
<td>24 months</td>
<td>91.0 ± 1.6</td>
<td>90.1 ± 1.6</td>
<td>0.9 (-3.5 to 5.4)</td>
<td>0.60</td>
</tr>
<tr>
<td>HTI peak torque</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>85.6 ± 2.1</td>
<td>82.9 ± 2.1</td>
<td>2.6 (-6.1 to 11.4)</td>
<td>0.55</td>
</tr>
<tr>
<td>6 months</td>
<td>85.2 ± 1.7</td>
<td>82.5 ± 1.7</td>
<td>3.2 (-1.4 to 7.9)</td>
<td>0.17</td>
</tr>
<tr>
<td>12 months</td>
<td>88.1 ± 1.6</td>
<td>86.8 ± 1.6</td>
<td>1.3 (-3.3 to 5.8)</td>
<td>0.59</td>
</tr>
<tr>
<td>24 months</td>
<td>92.0 ± 1.6</td>
<td>90.0 ± 1.5</td>
<td>2.1 (-2.3 to 6.5)</td>
<td>0.35</td>
</tr>
<tr>
<td>HTI average power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>88.4 ± 7.9</td>
<td>81.3 ± 2.3</td>
<td>7.1 (-9.1 to 23.3)</td>
<td>0.39</td>
</tr>
<tr>
<td>6 months</td>
<td>78.9 ± 1.6</td>
<td>74.4 ± 1.6</td>
<td>4.5 (0.1 to 9.0)</td>
<td>0.05</td>
</tr>
<tr>
<td>12 months</td>
<td>82.5 ± 1.5</td>
<td>81.6 ± 1.5</td>
<td>0.9 (-3.3 to 5.1)</td>
<td>0.68</td>
</tr>
<tr>
<td>24 months</td>
<td>86.8 ± 1.6</td>
<td>85.1 ± 1.6</td>
<td>1.7 (-2.8 to 6.2)</td>
<td>0.45</td>
</tr>
<tr>
<td>HTI/QI ratio (involved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>56.8 ± 2.0</td>
<td>55.7 ± 1.2</td>
<td>1.2 (-3.4 to 5.8)</td>
<td>0.62</td>
</tr>
<tr>
<td>6 months</td>
<td>55.6 ± 1.4</td>
<td>56.9 ± 1.4</td>
<td>-1.3 (-5.3 to 2.7)</td>
<td>0.53</td>
</tr>
<tr>
<td>12 months</td>
<td>51.1 ± 1.2</td>
<td>53.2 ± 1.2</td>
<td>-2.1 (-5.5 to 1.3)</td>
<td>0.22</td>
</tr>
<tr>
<td>24 months</td>
<td>52.2 ± 1.2</td>
<td>52.0 ± 1.2</td>
<td>0.2 (-3.1 to 3.6)</td>
<td>0.90</td>
</tr>
</tbody>
</table>

*Adjusted for baseline uninvolved limb strength measurement

ACLR, anterior cruciate ligament reconstruction; CI, confidence interval; HTI, hamstring index; QI, quadriceps index; SE, standard error
Results – LEFS Scores

• Significant difference at 6 months favoring ACLR alone
 – Reduced lower limb function at 6 months after ACLR+LET
 – Not a clinically significant difference

• No difference between groups at 12 or 24 months

<table>
<thead>
<tr>
<th>Time</th>
<th>ACLR alone (mean ± SE)</th>
<th>n</th>
<th>ACLR + LET (mean ± SE)</th>
<th>n</th>
<th>Mean difference* (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-op</td>
<td>54.2 ± 1.0</td>
<td>173</td>
<td>54.1 ± 1.0</td>
<td>172</td>
<td>0.08 (-2.7 to 2.8)</td>
<td>0.95</td>
</tr>
<tr>
<td>6 months</td>
<td>70.0 ± 0.8</td>
<td>173</td>
<td>67.6 ± 0.8</td>
<td>172</td>
<td>2.3 (0.2 to 4.5)</td>
<td>0.03</td>
</tr>
<tr>
<td>12 months</td>
<td>72.5 ± 0.9</td>
<td>164</td>
<td>73.3 ± 0.9</td>
<td>164</td>
<td>-0.8 (-3.1 to 1.6)</td>
<td>0.53</td>
</tr>
<tr>
<td>24 months</td>
<td>76.0 ± 0.5</td>
<td>151</td>
<td>75.7 ± 0.5</td>
<td>149</td>
<td>0.3 (-1.2 to 1.8)</td>
<td>0.70</td>
</tr>
</tbody>
</table>

*Adjusted for baseline LEFS score

ACLR, anterior cruciate ligament reconstruction; CI, confidence interval; HTI, hamstring index; QI, quadriceps index; SE, standard error
Conclusion

• Statistically significant differences between the two groups were found at 6 months for QI peak torque and average power as well as the subjective functional score in favor of ACLR alone, all of which normalized by 12 months
 – Unlikely to be clinically significant

• The addition of LET to ACLR suggests a slower rate of lower limb functional recovery with no differences from 12 months onward.

• There were no differences in LSI between the two groups at any time point.

• Indications have to be further defined.
Acknowledgments

Funded by: International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine (ISAKOS)

FKSMC:
Dr. Alan Getgood
Dr. Robert Litchfield
Dr. Kevin Willits
Dr. Dianne Bryant
RA – Chris Hewison
RA – Nicole Kaniki
RA – Alliya Remtulla
RA – Stacey Wanlin
RA – Andrew Firth
RA – Ryan Pinto
RA – Ashley Martindale
Research Student – Lindsey O’Neill
Research Student – Morgan Jennings
Research Student – Michal Daniluk

Antwerp:
Dr. Peter Verdonk
Dr. Geert Declerq
RA – Kristien Vuylsteke
RA – Mieke Van Haver

Calgary:
Dr. Alex Rezansoff
Dr. Nick Mohtadi
RA – Rhamona Barber
RA – Denise Chan
RA – Caitlin Campbell
RA – Alexandra Garven
RA – Karen Pulsifer
RA – Michelle Mayer

Coventry:
Mr. Tim Spalding
Mr. Pete Thompson
Mr. Andrew Metcalfe
RA – Debra Dunne
RA – Laura Asplin
R&D Director - Ceri Jones
RA – Alisen Dube
RA – Louise Clarkson
RA – Jaclyn Brown
RA – Alison Bolsover
RA – Sarah Verdugo
RA – Kerri McGowan

McMaster:
Dr. Devin Peterson
RA – Nicole Simunovic
RA – Andrew Duong
RA – Ajaykumar Shanmugaraj

Pan Am:
Dr. Peter MacDonald
Dr. Greg Stranges
RA – Sheila Mcrae
RA – LeeAnne Gullett
RA – Holly Brown

Queen’s:
Dr. Davide Bardana
RA – Fiona Howells
PT – Murray Tough
PT - Gurupaul Dutta

FHA:
Dr. Dory Boyer
Dr. Bob McCormack
RA – Mauri Zomar
RA – Karyn Moon

FHA Cont’d:
RA – Raely Moon
RA – Brenda Fan
RA – Bindu Mohan
RA - Kyrsten Payne

Banff:
Dr. Mark Heard
Dr. Greg Buchko
Dr. Laurie Hiemstra
RA – Sarah Kerslake
RA – Jeremy Tynedal