ACL reconstruction using the ST4-TLS technique: what is the impact of interference screw type on clinical outcomes?
Comparative prospective study in 521 patients

Edouard LEFEVRE, Shahnaz KLOUCHE, Serge HERMAN, Yoann BOHU, Antoine GEROMETTA, Romain CHEVALLIER, Nicolas LEFEVRE

Clinique du Sport, Paris, France
Institut de l’Appareil Locomoteur Nollet, Paris, France
Conflicts of Interest statement

- Nicolas Lefevre : consultant Websurvey

- S Klouche: consultant FH-Orthopedics

- E Lefevre, Y Bohu, A Gerometta, S Herman and R Chevallier: none

- Funding: *Fonds de Dotation pour la Recherche Clinique en Orthopédie et Pathologie du Sport* Paris, FRANCE
Introduction - Technique

• France: about 45,000 ACL reconstruction in 2016 (www.scansante.fr)
• USA: 250,000 per year (Kim, JBJS 2011)
• 4 bundles = short graft
• ST4 technique: 1 hamstring tendon semitendinosus
 › Less morbidity and loss of strength
 › Preserve the gracilis tendon
• TLS (Tape Locking Screw), FH
 › Small diameter (4.5mm) bone tunnels made by outside-in aiming on the tibia and femur
 › Anchoring tape
 › Dedicated interference screw
Problematic

• Interference screw:
 › titanium (A),
 › PEEK(B)
 › or bioabsorbable (C)

• Advantage/disadvantage of the different screws

<table>
<thead>
<tr>
<th></th>
<th>Titanium</th>
<th>PEEK</th>
<th>Bioabsorbable</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>No fracture</td>
<td>Artfact</td>
<td>Inert</td>
<td>Screw fracture</td>
</tr>
<tr>
<td>Inert</td>
<td>Difficult ablation</td>
<td>Strong fixation</td>
<td>Allergy</td>
</tr>
<tr>
<td>Durable fixation</td>
<td>Metallosion</td>
<td>?</td>
<td>Costly</td>
</tr>
<tr>
<td>Low cost</td>
<td>Infection?</td>
<td></td>
<td>Osteolysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cyst</td>
</tr>
</tbody>
</table>

• Which screw to use? Need clinical arguments to guide the surgeon in his choice
• To assess the impact of the 3 types of screws (Ti, PEEK, bioabsorbable) on clinical outcomes at 2-year minimum follow-up
 › Efficacy, safety
• Comparative study, retrospective analysis of data collected prospectively (French prospective Acl STudy or FAST cohort)
 › NCT02511158
• Non inferiority study
• Inclusion criteria: continuous series of patients, aged over 15.5, operated in 2012-2015 for primary ACL reconstruction, using the DT4-TLS technique.
• Exclusion criteria: associated rupture of the posterior cruciate ligament and patient refusal
Surgical technique

1, 2: Harvesting of the ST
3: 4 bundles, fixation of the tapes, traction
4: outside-to-inside femoral targeting
5: outside-to-inside tibial targeting
6: drilling the tunnels
7: retrograde reaming of the cavities
8: passing the graft and tapes
9: fixing the graft by crews
Design and methodology (2)

• 3 groups according to the type of screw
 › Titanium
 › PEEK
 › or bioabsorbable

• Primary endpoint: the occurrence of an adverse event during the first 2 years
 › hematoma, haemarthrosis, septic arthritis, phlebitis, cyclops syndrome, algodystrophy and re-rupture

• Secondary criteria
 › return to sport, functional scores (IKDC, KOOS, ACL-RSI) at 2-year FU

• Statistical analysis
 › Number of subjects required for a non-inferiority study: 36/group
 › ANOVA, Khi2, Mc Nemar tests
Results: Number and description of patients

Primary reconstruction by ST4-TLS
N=521

- TITANE
 n₁=229 (44%)
- BIOABSORBABLE
 n₂=222 (42.6%)
- PEEK
 n₃=70 (13.4%)

- Ratio M / F : 344 men / 177 women
- Mean age : 30.1 ± 9.3 years
- 507 athletes (97.3%) whom 205 (39.4%) competitors
- No significant difference between groups at inclusion (age, sex, functional scores, level of sport practice)
Results: data at inclusion and peroperatively

<table>
<thead>
<tr>
<th></th>
<th>Ti (N=229)</th>
<th>Bioabsorbable (N=222)</th>
<th>PEEK (N=70)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>30.7±9.1</td>
<td>29.2±9.2</td>
<td>30.6±10.1</td>
<td>0.17</td>
</tr>
<tr>
<td>Sexe</td>
<td>M 156/ F 73</td>
<td>M 145/ F 77</td>
<td>M 43/ F 27</td>
<td>0.56</td>
</tr>
<tr>
<td>IKDC subjective</td>
<td>55.5±18.5</td>
<td>59.3±17.3</td>
<td>58.6±17.7</td>
<td>0.07</td>
</tr>
<tr>
<td>Extra-articular tenodesis</td>
<td>15 (6.5%)</td>
<td>28 (12.6%)</td>
<td>17 (24.3%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Chondropathy</td>
<td>71 (31%)</td>
<td>49 (22.1%)</td>
<td>15 (21.4%)</td>
<td>0.06</td>
</tr>
<tr>
<td>Medial meniscal lesion</td>
<td>83 (36.2%)</td>
<td>77 (34.7%)</td>
<td>25 (35.7%)</td>
<td>0.93</td>
</tr>
<tr>
<td>Lateral meniscal lesion</td>
<td>80 (34.9%)</td>
<td>75 (33.8%)</td>
<td>21 (30%)</td>
<td>0.73</td>
</tr>
<tr>
<td>Graft length (mm)</td>
<td>52.7±7.1</td>
<td>52.9±4.2</td>
<td>53.2±3.8</td>
<td>0.81</td>
</tr>
<tr>
<td>Graft diameter (mm)</td>
<td>8±0.7</td>
<td>8±0.7</td>
<td>8.1±0.8</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Results: adverse events – return to sport 2y

- No statistically significant difference between groups on the occurrence of adverse events (p=0.85)
- Including re-ruptures (p=0.96),
- 1 patient presented an intra-osseous tibial cyst with a bioabsorbable screw.

<table>
<thead>
<tr>
<th></th>
<th>Ti (N=229)</th>
<th>Bioabsorbable (N=222)</th>
<th>PEEK (N=70)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athletes who responded</td>
<td>171</td>
<td>175</td>
<td>52</td>
<td>--</td>
</tr>
<tr>
<td>Return to race</td>
<td>128 (74.9%)</td>
<td>123 (70.3%)</td>
<td>40 (76.9%)</td>
<td>0.44</td>
</tr>
<tr>
<td>Usual sport</td>
<td>102 (59.6%)</td>
<td>99 (56.6%)</td>
<td>23 (44.2%)</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Functional scores at 2-year FU

<table>
<thead>
<tr>
<th></th>
<th>Ti (N=229)</th>
<th>Bioabsorbable (N=222)</th>
<th>PEEK (N=70)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective IKDC</td>
<td>83.4±15.4</td>
<td>85.4±12.8</td>
<td>84.3±12.5</td>
<td>0.03</td>
</tr>
<tr>
<td>KOOS symptoms</td>
<td>84.7±14</td>
<td>86.6±12</td>
<td>87.9±12.3</td>
<td>0.19</td>
</tr>
<tr>
<td>KOOS pain</td>
<td>90.8±11.6</td>
<td>92.5±8.7</td>
<td>92.4±7.8</td>
<td>0.0001</td>
</tr>
<tr>
<td>KOOS daily living</td>
<td>95.8±7.7</td>
<td>96.7±7.6</td>
<td>97.7±5.3</td>
<td>0.21</td>
</tr>
<tr>
<td>KOOS sport</td>
<td>81.2±20.9</td>
<td>82.2±19.8</td>
<td>82.3±20.2</td>
<td>0.86</td>
</tr>
<tr>
<td>KOOS QoL</td>
<td>74.2±24.3</td>
<td>75.1±23.1</td>
<td>73.1±20.7</td>
<td>0.84</td>
</tr>
<tr>
<td>ACL-RSI</td>
<td>66.5±25.8</td>
<td>65.6±24.2</td>
<td>65.1±24.7</td>
<td>0.91</td>
</tr>
</tbody>
</table>
Conclusion

In this prospective comparative study, after the reconstruction of an isolated ACL tear according to the DT4-TLS technique, the type of interference screw has no impact on the occurrence of adverse events and clinical outcomes at 2 years of follow-up.
References

6. Chevallier R et al. Bioabsorbable screws, whatever the composition, can result in symptomatic intra-osseous tibial tunnel cysts after ACL reconstruction. KSSTA. 2019 Jan;27(1):76-85.