Clinical Outcomes of All-Soft Tissue Quadriceps Tendon Autograft in Anterior Cruciate Ligament Reconstruction

Authors:

Albert T. Anastasio, BA, Atlanta, GA, UNITED STATES

Kevin X. Farley, BS, Atlanta, GA, UNITED STATES

Stephanie Boden, MD, Pittsburgh, PA, UNITED STATES

John Xerogeanes, MD, Brookhaven, GA, UNITED STATES

Department of Orthopaedic Surgery
Emory University, Atlanta GA
The authors have no financial conflicts to disclose
Summary: This study aims to examine prospectively collected intermediate-term clinical outcome data following primary ACL reconstruction and revision anterior cruciate ligament (ACL) reconstruction using an all-soft tissue quadriceps tendon (QT) autograft.
This study aims to examine prospectively collected intermediate-term clinical outcome data following primary ACL reconstruction and revision anterior cruciate ligament (ACL) reconstruction using an all-soft tissue quadriceps tendon (QT) autograft.
Methods

Study Design

- 357 patients with a mean age of 20.1 ± 6.0 years undergoing primary ACL reconstruction with an all-soft tissue QT autograft were prospectively followed with an average follow up of 2.3 ± 0.9 years.

- Additionally, 62 patients undergoing revision ACL reconstruction with an all soft tissue QT autograft after failed primary repair were also included in the study (mean age=24.2 \pm 1.1 years, average follow up=1.7 \pm 0.2 years).

- The senior author performed all surgeries, utilizing a minimally invasive graft harvest technique and suspensory fixation.
Methods: assessment

• Subjective assessment of knee function was obtained using pre-operative and post-operative IKDC scores.
• Postoperative KT-1000 arthrometer and isokinetic strength testing measurements were collected at regular intervals.
• The incidence of complication rates including graft harvest site hematoma, postoperative loss of knee extension, and graft failure were recorded.
Results: Primary Reconstruction Cases

- The preoperative mean IKDC score for the primary ACL reconstruction procedures was 44.1 ± 15.5, and postoperative mean IKDC score was 84.4 ± 14.8, (p<0.0001).

- The percentage of patients with ± 3 mm side-to-side difference on KT-1000 arthrometer testing at 6-weeks, 3-months, and 6-months was found to be 99%, 98%, and 95%, respectively.

- Isokinetic strength testing at 6 months post-operatively showed the mean extension torque at 60 degrees/s and 180 degrees/s was 72.6% and 73.0% respectively.

- These values increased at 1 year to 82.5% (p=0.002) and 84.2% (p=0.07).

- Graft harvest site hematoma developed in 10 patients (2.8%) and postoperative loss of knee extension occurred in 30 (8.4%).

- Graft failure requiring revision occurred in 15 (4.2%) patients.
Results: revision cases

- Preoperative mean IKDC score was 52.8 ± 2.2, and postoperative mean IKDC score was 77.3 ± 3.6 (p<0.0001).
- The mean KT-1000 arthrometer testing scores at 6-weeks, 3-months, and 6-months were 1.2 ± 0.3, 1.4 ± 0.3, and 1.5 ± 0.3, respectively.
- Graft harvest site hematoma developed in three patients (4.8%) and postoperative loss of knee extension occurred in one patient (1.6%).
- Graft failure requiring revision occurred in three patients (4.8%).
Conclusions: Main Take Away Points

• ACL reconstruction and revision with an all-soft tissue QT autograft using a minimally invasive harvest technique and suspensory fixation has acceptable short and intermediate-term clinical outcomes.

• The results of this study support the use of all-soft tissue QT autograft in ACL reconstruction.
References

