Is Body Mass Index a Risk Factor for Complications following Arthroscopy of the Knee, Hip and Shoulder?

Richard W. Nicolay, MD, Ryan S. Selley, MD, Michael A. Terry, MD, Vehniah K. Tjong, MD

Department of Orthopaedic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

Published in *Arthroscopy* since Submission

PMID: 30733034
Disclosures

Authors:

Richard W. Nicolay, MD – No financial conflicts to disclose.

Ryan S. Selley, MD – No financial conflicts to disclose.

Michael A. Terry, MD – Paid consultant for Arthrex, Smith & Nephew.

Vehniah K. Tjong, MD – Paid consultant for Smith & Nephew.
Aim: Utilize the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database to determine if body mass index (BMI) is associated with 30-day postoperative complications following arthroscopic surgery.

Hypothesis: Elevated BMI is an independent risk factor for postoperative morbidity, mortality, readmission, reoperation and venothromboembolism (VTE) following arthroscopic surgery of the knee, hip and shoulder.

Level of Evidence: Level III
Methods

Data source: NSQIP Participant Use File (PUF) was queried between 2006 and 2016

Case identification: CPT and ICD-10 codes were used to isolate cases of elective arthroscopy of the knee, hip and shoulder

Design: A retrospective comparative analysis was conducted

Statistics: Univariate analyses and binary logistic regressions were used to ascertain the adjusted effect of BMI on:

- Morbidity
- Mortality
- Readmission
- Reoperation
- VTE
Results

141,335 patients met criteria

Most common complications
- Deep vein thrombosis (0.27%)
- Superficial surgical site infection (SSI) (0.17%)
- Urinary tract infection (0.13%)
- Pulmonary embolism (PE) (0.11%)

All morbidity
- Superficial SSI
- Deep SSI
- Organ/space SSI (septic arthritis)
- Wound disruption
- Pneumonia
- Unplanned reintubation
- PE
- Prolonged ventilation
- Progressive renal failure
- Acute renal failure
- Urinary tract infection
- Cerebrovascular accident
- Cardiac arrest
- Myocardial infarction
- Bleeding requiring transfusion
- Deep vein thrombosis (DVT)
- Sepsis
- VTE
Multivariate analysis: Binary logistic regression of predictors of All Morbidity

<table>
<thead>
<tr>
<th></th>
<th>SHOULDER (n=56449)</th>
<th>(^\text{HIP} (n=2023))</th>
<th>KNEE (n=82817)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Morbidity (%)</td>
<td>P-value</td>
<td>Morbidity (%)</td>
</tr>
<tr>
<td>Mean age (years) [SD]</td>
<td>58 (13.8)</td>
<td><0.001</td>
<td>41.83 (16.67)</td>
</tr>
<tr>
<td>Sex</td>
<td>0.340</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Male</td>
<td>233 (0.7)</td>
<td></td>
<td>10 (1.2)</td>
</tr>
<tr>
<td>Female</td>
<td>168 (0.8)</td>
<td></td>
<td>14 (1.2)</td>
</tr>
<tr>
<td>BMI</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Weight</td>
<td>55 (0.5)</td>
<td></td>
<td>7 (1.0)</td>
</tr>
<tr>
<td>Underweight</td>
<td>6 (2.0)</td>
<td>0.001</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Overweight</td>
<td>122 (0.6)</td>
<td>0.299</td>
<td>11 (1.5)</td>
</tr>
<tr>
<td>Obesity I</td>
<td>88 (0.8)</td>
<td>0.015</td>
<td>4 (1.1)</td>
</tr>
<tr>
<td>Obesity I w/ DM</td>
<td>26 (1.1)</td>
<td>0.001</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Obesity II</td>
<td>46 (1.0)</td>
<td>0.001</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>Obesity II w/ DM</td>
<td>18 (1.2)</td>
<td>0.002</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Obesity III</td>
<td>21 (0.7)</td>
<td>0.138</td>
<td>1 (1.7)</td>
</tr>
<tr>
<td>Obesity III w/ DM</td>
<td>19 (1.6)</td>
<td><0.001</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Comorbidities</td>
<td><0.001</td>
<td></td>
<td>0.055</td>
</tr>
<tr>
<td>0 (*reference)</td>
<td>124 (0.5)</td>
<td></td>
<td>11 (0.8)</td>
</tr>
<tr>
<td>1</td>
<td>135 (0.7)</td>
<td>0.002</td>
<td>11 (2.2)</td>
</tr>
<tr>
<td>>=2</td>
<td>142 (1.4)</td>
<td><0.001</td>
<td>2 (1.4)</td>
</tr>
<tr>
<td>ASA</td>
<td><0.001</td>
<td></td>
<td>0.695</td>
</tr>
<tr>
<td>1-2</td>
<td>229 (0.5)</td>
<td></td>
<td>21 (1.2)</td>
</tr>
<tr>
<td>3-5</td>
<td>172 (1.2)</td>
<td></td>
<td>3 (1.5)</td>
</tr>
</tbody>
</table>

*Reference = the reference group to which all other groups were compared in order to generate the adjusted OR and p-value.
All Morbidity versus BMI Class

Relative frequency of complication (%)

BMI Class

Underweight Normal Overweight Obesity I Obesity II Obesity III

Hip Knee Shoulder

Northwestern Medicine
Multivariate analysis: Binary logistic regression of predictors of Readmission, Reoperation and VTE

<table>
<thead>
<tr>
<th></th>
<th>Readmission</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjusted OR (95%CI)</td>
<td>P-value</td>
<td>Adjusted OR (95%CI)</td>
<td>P-value</td>
<td>Adjusted OR (95%CI)</td>
</tr>
<tr>
<td>Age</td>
<td>1.020 (1.014-1.025)</td>
<td><0.001</td>
<td>0.997 (0.989-1.004)</td>
<td>0.400</td>
<td>1.009 (1.002-1.015)</td>
</tr>
<tr>
<td>Female Sex</td>
<td>0.915 (0.796-1.052)</td>
<td>0.212</td>
<td>0.879 (0.713-1.085)</td>
<td>0.230</td>
<td>0.918 (0.764-1.104)</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Weight (*reference)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Underweight</td>
<td>2.041 (0.946-4.401)</td>
<td>0.069</td>
<td>1.828 (0.572-5.846)</td>
<td>0.309</td>
<td>1.312 (0.983-1.752)</td>
</tr>
<tr>
<td>Overweight</td>
<td>0.849 (0.687-1.050)</td>
<td>0.131</td>
<td>0.833 (0.614-1.131)</td>
<td>0.241</td>
<td>1.474 (1.088-1.996)</td>
</tr>
<tr>
<td>Obesity I</td>
<td>0.905 (0.721-1.136)</td>
<td>0.391</td>
<td>0.687 (0.485-0.973)</td>
<td>0.034</td>
<td>1.048 (0.571-1.923)</td>
</tr>
<tr>
<td>Obesity I w/ DM</td>
<td>0.750 (0.514-1.094)</td>
<td>0.136</td>
<td>1.039 (0.605-1.783)</td>
<td>0.889</td>
<td>1.469 (1.027-2.101)</td>
</tr>
<tr>
<td>Obesity II</td>
<td>0.888 (0.676-1.167)</td>
<td>0.395</td>
<td>1.010 (0.692-1.474)</td>
<td>0.959</td>
<td>1.264 (0.658-2.428)</td>
</tr>
<tr>
<td>Obesity II w/ DM</td>
<td>1.262 (0.884-1.801)</td>
<td>0.199</td>
<td>1.220 (0.692-2.149)</td>
<td>0.492</td>
<td>1.264 (0.658-2.428)</td>
</tr>
<tr>
<td>Obesity III</td>
<td>1.436 (1.018-2.028)</td>
<td>0.128</td>
<td>0.757 (0.486-1.180)</td>
<td>0.219</td>
<td>1.182 (0.766-1.822)</td>
</tr>
<tr>
<td>Obesity III w/ DM</td>
<td>2.342 (1.998-2.745)</td>
<td>0.040</td>
<td>0.960 (0.525-1.754)</td>
<td>0.894</td>
<td>1.544 (0.831-2.867)</td>
</tr>
<tr>
<td>ASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASA 1-2 (*reference)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ASA 3-5</td>
<td>2.342 (1.998-2.745)</td>
<td><0.001</td>
<td>2.034 (1.585-2.610)</td>
<td><0.001</td>
<td>0.928 (0.729-1.180)</td>
</tr>
<tr>
<td>Principle arthroscopic procedure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder (*reference)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hip</td>
<td>2.018 (1.211-3.360)</td>
<td>0.007</td>
<td>1.202 (0.440-3.283)</td>
<td>0.720</td>
<td>1.173 (0.430-3.198)</td>
</tr>
<tr>
<td>Knee</td>
<td>0.985 (0.857-1.132)</td>
<td>0.829</td>
<td>1.719 (1.372-2.153)</td>
<td><0.001</td>
<td>2.288 (1.849-2.832)</td>
</tr>
</tbody>
</table>

*Reference = the reference group to which all other groups were compared in order to generate the adjusted OR and p-value.
Results

All Procedures (Knee, Hip & Shoulder)

• **Obesity class III with diabetes** was an independent risk factor
 – Morbidity (OR 1.522, 95% CI, 1.101-2.103)
 – Readmission (OR 2.342, 95% CI, 1.998-2.745)

• **Obesity class I** was independently protective
 – Reoperation (OR 0.687, 95% CI, 0.485-0.973)

• **VTE** risk factors included
 – **Overweight** (OR 1.474, 95% CI, 1.088-1.996)
 – **Obesity class 1 with diabetes** (OR 1.469, 95% CI, 1.027-2.101)
Results

- **Shoulder Arthroscopy** risk factors for all morbidity:
 - Underweight patients (OR 3.776, 95% CI, 1.605-8.883)
 - Class I obese (OR 1.421, 95% CI, 1.010-1.998)
 - Class II obese (OR 1.726, 95% CI, 1.159-2.569)

- **Knee Arthroscopy**
 - BMI did not significantly affect morbidity

- **Hip Arthroscopy**
 - Subgroup had a low event rate of morbidity, the analysis could not be performed
Conclusion

Arthroscopic procedures are safe with very low complication rates

However, certain patients are at higher risk:

Higher morbidity following shoulder arthroscopy
• Underweight
• Class I obese
• Class II obese

Higher morbidity and readmission following all arthroscopy
• Class III obesity with diabetes

Because BMI is a modifiable risk factor, these patients should be evaluated carefully before being considered for outpatient arthroscopic surgery

