Complete Capsular Closure Restores Native Hip Kinematics Following Interportal and T-capsulotomy

P. Baha, T. Burkhart, A. Getgood, R.M. Degen
Fowler Kennedy Sport Medicine Clinic
Western University
London, Ontario, Canada
Disclosures

• Ryan M. Degen, MD:
 – I have no financial conflicts to disclose on my behalf or on behalf of my co-authors
• In recent years, hip arthroscopy utilization has significantly increased \(^1,^2\)

• Surgical techniques continue to evolve to optimize patient outcome
 – Capsular management has become an area of focus

• Extent of capsulotomy utilized ranges from capsulectomy to an interportal capsulotomy to a T-capsulotomy \(^3,^4\)
• Prior biomechanical studies have reported increased rotational laxity with larger capsulotomies
 – Repair has subsequently restored normal joint rotation$^{5-8}$

• However, there is a paucity of information on the effect of capsulotomies on joint translation
 – Particularly relevant as increased translation is thought to be linked to ‘microinstability’
• To investigate the biomechanical effect of capsulotomy and capsular repair techniques on hip joint kinematics, including both translation and rotation, in varying combinations of sagittal and coronal plane joint positions
Methods

- Eight hips (78.3±6.0 years of age; 4 left, 6 male) were prepared.
- The femur was potted and attached to a load cell, while the pelvis was secured to a custom-designed fixture allowing static alteration of the flexion/extension arc.
- Optotrak markers were rigidly attached to the femur and pelvis to track motion of the femoral head with respect to the acetabulum.
- Seven conditions were tested:
 - i) intact;
 - ii) after portal placement (anterolateral and mid-anterior);
 - iii) interportal capsulotomy (IPC) [35 mm in length];
 - iv) IPC repair;
 - v) T-capsulotomy [IPC+15 mm longitudinal incision];
 - vi) partial T-repair (repair of longitudinal incision with IPC left open);
 - vii) full T-repair.
Methods

• Testing occurred in 15° of extension (-15°), 0°, 30°, 60° and 90° of flexion
• Each sagittal plane position was then repeated in neutral, abduction and adduction resulting in 15 testing positions.
• 3N-m internal rotation (IR) and external rotation (ER) moments were manually applied to the femur via the load cell at each position.
• Rotational range of motion and joint translation were recorded
Results

• **Rotation**
 – Neutral coronal plane:
 • In extension (-15°): T-capsulotomy significantly increased IR/ER rotational ROM compared with intact state at (55.96±6.11° vs. 44.92±7.35°, p<0.001)
 • At 0°: IPC significantly increased rotation compared with the portal state at (60.09±6.82° vs. 51.68±10.35°, p=0.004)

• **Translation:**
 – There were no statistically significant increases in mediolateral (ML) joint translation following IPC or T-capsulotomy
 – There were no statistically significant increases in anteroposterior (AP) translation following IPC or T-capsulotomy

• **Complete capsular repair restored near native joint kinematics, with no significant differences in rotation or translation between any complete capsular repair groups and the intact state, regardless of joint position**
Conclusion

• Universally across all conditions, complete capsular repair following interportal or T-capsulotomy restored rotational ROM and joint translation to values observed in the native joint.

• Where feasible, complete capsular closure should be performed, especially following T-capsulotomy.

• Further clinical evaluation is required to determine if adverse kinematics of an unrepaired capsule are associated with reduced patient reported outcomes.
References

