What Makes Suture Anchor Use Safe In Hip Arthroscopy? A Systematic Review Of Techniques And Safety Profile

Ajay Shah, Jeffrey Kay, Muzammil Memon, Ryan Coughlin, Nicole Simunovic, Shane Nho, Olufemi R. Ayeni

Investigation performed at McMaster University, Hamilton, ON, Canada
Disclosures

No funding affiliations to be disclosed
Introduction and Background

- Arthroscopic repair of labral tears using suture anchors is shown to have good outcomes [1]

- Complications associated with aberrant suture anchor insertion include pain, mechanical symptoms, and revision arthroscopy [2,3]

- Objectives: to review factors related to suture anchor insertion (i.e.: insertion angle, portal, anchor size, patient factors) is warranted to ascertain the safety of this technique.
Introduction and Background

- Location along acetabular face denoted by “clock face” - midpoint of transverse acetabular ligament as 6-o’clock in 41.6% of studies [4]

- Safe drilling angle: between two straight lines from acetabular rim, touching subchondral bone and outer cortex [5]

- Anchors are polyetheretherketone (PEEK) or ultra-high molecular weight polyethylene (UHMWPE) all-suture anchors (ASA) [6]

- Common drilling portals are anterolateral (AL), mid-anterior (MA), anterior (ANT), posterolateral (PL), and distal anterolateral (DALA)
Methods

- Systematic search of Embase, MEDLINE, PubMed
- All results screened in duplicate at each stage
- Included: Human and biomechanical studies, all levels of evidence
- Excluded: non-operative studies, no suture anchor insertion details
- Study quality assessed using MINORS
Results

<table>
<thead>
<tr>
<th>Demographic Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Evidence</td>
<td>Level IV (n=4), III (n=9), I (n=1)</td>
</tr>
<tr>
<td>MINORS (mean ± SD)</td>
<td>13 ± 1.15</td>
</tr>
<tr>
<td>QUACS (mean ± SD)</td>
<td>10.75 ± 1.58</td>
</tr>
<tr>
<td>Total hips (n)</td>
<td>651</td>
</tr>
<tr>
<td>Cadaveric hips (n)</td>
<td>123</td>
</tr>
<tr>
<td>% Male</td>
<td>46.0%</td>
</tr>
<tr>
<td>Mean age</td>
<td>38.5 years</td>
</tr>
</tbody>
</table>
Complications of Suture Anchors

1. Psoas Tunnel Perforation [2]
 a. Perforation causing abutment of iliopsoas tendon and neurovascular structures
 b. NV structures injured in 23.3% of free drill penetrations [7]

2. Cartilage Perforation [8]
 a. Anterosuperior (12 to 3-o’clock) locations most common
 b. “Ballooning” of cartilage was observed

- Perforation rate ranged from 4.0% to 18.2%
- Removal of the offending anchor did not always relieve pain
- Revision arthroscopy and arthroplasty required in 18% of patients
Results

<table>
<thead>
<tr>
<th>Factors</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetabular Characteristics</td>
<td>• Bone was thinnest at 3 and 10-o’clock [9]</td>
</tr>
<tr>
<td></td>
<td>• Acetabular rim angle smallest at 3-o’clock [10]</td>
</tr>
<tr>
<td></td>
<td>• Articular involvement most common at 3-o’clock and 1-2 o’clock positions</td>
</tr>
<tr>
<td></td>
<td>(approx. 4.48%; OR: 7.98) [3]</td>
</tr>
<tr>
<td>Drilling Techniques</td>
<td>• Mean safe angle of anchor insertion was 27.6° [5]</td>
</tr>
<tr>
<td></td>
<td>• Curved drill guides increase distance to articular cartilage [11]</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Factors</th>
<th>Details</th>
</tr>
</thead>
</table>
| Insertion Portals | ● PL portal preferred for posterior repairs (8 to 11-o’clock) [9]
 ● No difference between MA and DALA for anterosuperior (12 to 3-o’clock) |
| Suture Anchors | ● Large (> 2.3-mm) anchors had more complications than small (< 1.4-mm) anchors at all locations [12]
 ● Safe drilling angle inversely proportional to anchor size [5]
 ● Drills < 3.0 mm recommended |
Discussion

Main Findings
- Anterior acetabular rim (3 to 4-o’clock) is a vulnerable site for suture anchor insertion
- Large diameter (> 2.3-mm) anchors had the highest incidence of perforation compared to small-diameter (< 1.8-mm) ASAs

Other Research
- The “psoas valley” at 3:20 (hr:min) of the pelvis has a bony depression [13]
- Matsuda et al [8] recommend inserting anchors at 2-o’clock instead of 3-o’clock if anatomically possible
- ASAs allow more anchors to be placed, with their small size useful in cases with limited safety angles [14,15]
Discussion

Recommendations

- Drills smaller than 3.0-mm are recommended at anterosuperior positions
- Both MA and DALA portals are safe at these positions
- Anchors should be placed with a distal-proximal trajectory to avoid intra-articular penetration
- Avoid excess rim trimming, as it may impair bony purchase
- Direct visualization of the articular surface is needed during drilling and anchor placement to confirm that cartilage is not penetrated
- Bone quality should dictate the size of the anchor used
- Nitinol wire may be passed through drill holes before anchor insertion to ensure that the joint and psoas tunnel have not been perforated
- Fluoroscopy can confirm that the articular space has not been violated
Conclusions

- Suture anchors at anterior acetabular rim positions (3 to 4-o’clock) should be inserted with caution.
- Large diameter (> 2.3-mm) suture anchors increase the likelihood of articular perforation.
- Direct arthroscopic visualization, fluoroscopy, distal-proximal insertion, and the use of nitinol wire can help prevent articular violation.
References

