Prevalence and Clinical Relevance of Injuries Associated with Recurrent Anterior Shoulder Instability

Narbona P.A., Martinez Gallino R., Olmos M.I., Acosta J.S., Allende G.J.

Division of Shoulder Surgery
Department of Orthopaedic Surgery
Sanatorio Allende, Córdoba, Argentina.
Disclosure

Dr. Narbona P.A.: I am Consultant for Arthrex

Martinez Gallino R.: I have no financial conflicts to disclose
Olmos M.I.: I have no financial conflicts to disclose
Acosta J.S.: I have no financial conflicts to disclose
Allende G.J.: I have no financial conflicts to disclose

No Potential Conflict of Interest
In this Presentation
Associated Injuries with SHOULDER DISLOCATIONS:

.Osseous: Glenoid / Hill-Sachs
.Labrum: Post / sup
.Chondral
.Rotator Cuff

"These injuries increase with recurrent instability"

*-Nakagwa SOJSM 2014.
*-Gutierrez V, CORR 2012.
PURPOSE

• Primary Purpose:
 To compare the prevalence of secondary injuries in patients treated after first shoulder dislocation vs recurrent instability

• Secondary Purpose:
 To evaluate recurrent rates in these groups.

HYPOTHESIS

There is a correlation between the number of episodes of anterior shoulder dislocation and the appearance of secondary injuries and Increase of Recurrent Rate.
METHODS

- Three groups according to number of episodes pre-op:

 GROUP A: 1 episode
 GROUP B: 2 to 4 episodes
 GROUP C: 5 or > episodes

Inclusion Criteria
- Arthroscopic bank repair
- Age >16 and <45 years
- Complete clinical records
- Pre-op MRI

Exclusion Criteria
- Previous surgery
- Multidirectional instability
- Labrum repair w/o dislocation
- Open surgery
Injuries Registered

- Bankart
- ALPSA
- HAGL
- Glenoid erosion
- Hill-Sachs
- Capsular Laxity
- Posterior Bankart
- SLAP
- Rotator Cuff injuries

CLINICALLY IMPORTANT INJURIES:
We considered that these injuries could add a surgical procedure to a standard Bankart repair

- Chronic Bony Bankart
- Glenoid erosion
- HAGL
- Hill-Sachs (engaging/off-track)
- Complete Rotator Cuff Tears
METHODS

Recurrence Rate

F-up ≥ 12 months

Statistical Analysis

- One-way ANOVA test: continuous
- Fisher Test or Chi-Square: categorical

$P < 0.05$ statistical significance
RESULTS

187 patients included

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num. of dislocations</td>
<td>1</td>
<td>2-4</td>
<td>>5</td>
<td></td>
</tr>
<tr>
<td>N° of patients</td>
<td>58</td>
<td>55</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media and SD</td>
<td>24.7±6.4</td>
<td>23.8±5.5</td>
<td>26.6±6.8</td>
<td>0.94</td>
</tr>
<tr>
<td>Range</td>
<td>17-42</td>
<td>16-38</td>
<td>16-45</td>
<td></td>
</tr>
<tr>
<td>Male/Female</td>
<td>54/4</td>
<td>52/3</td>
<td>65/9</td>
<td>0.43</td>
</tr>
<tr>
<td>Dominant/Non dom</td>
<td>20/38</td>
<td>17/38</td>
<td>32/44</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Glenoid Erosion

<table>
<thead>
<tr>
<th>Group</th>
<th>Value</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A (1 ep)</td>
<td>5</td>
<td>8%</td>
</tr>
<tr>
<td>Group B (2 - 4 ep)</td>
<td>8</td>
<td>15%</td>
</tr>
<tr>
<td>Group C (5 o > ep)</td>
<td>23</td>
<td>30%</td>
</tr>
</tbody>
</table>

\[p < 0.01 \]

Capsular Laxity

<table>
<thead>
<tr>
<th>Group</th>
<th>Value</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A (1 ep)</td>
<td>4</td>
<td>7%</td>
</tr>
<tr>
<td>Group B (2 - 4 ep)</td>
<td>17</td>
<td>31%</td>
</tr>
<tr>
<td>Group C (5 o > ep)</td>
<td>22</td>
<td>29%</td>
</tr>
</tbody>
</table>

\[p = 0.02 \]

Posterior Bankart

<table>
<thead>
<tr>
<th>Group</th>
<th>Value</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A (1 ep)</td>
<td>20</td>
<td>33%</td>
</tr>
<tr>
<td>Group B (2 - 4 ep)</td>
<td>17</td>
<td>38%</td>
</tr>
<tr>
<td>Group C (5 o > ep)</td>
<td>29</td>
<td>38%</td>
</tr>
</tbody>
</table>

SLAP

<table>
<thead>
<tr>
<th>Group</th>
<th>Value</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>22%</td>
</tr>
</tbody>
</table>

\[0.66 \]
CLINICALLY IMPORTANT INJURIES*

<table>
<thead>
<tr>
<th>N of ep.</th>
<th>1</th>
<th>2-4</th>
<th>5 or ></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRI * yes/no</td>
<td>9/49</td>
<td>18/37</td>
<td>37/37</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>32%</td>
<td>50%</td>
<td></td>
</tr>
</tbody>
</table>

* clinically relevant injuries that could add a surgical procedure to a standard bankart repair
Recurrence Rate

n = 110, F-up ≥ 12 months (med 33)

<table>
<thead>
<tr>
<th>N of ep.</th>
<th>1</th>
<th>2-4</th>
<th>5 or ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence/Total</td>
<td>3/33</td>
<td>5/29</td>
<td>4/48</td>
</tr>
</tbody>
</table>

P = 0.39

10.9 %
Limitations

- Retrospective
- Glenoid bone loss (< 25%, not further discrimination)
- Selection bias (arthroscopic procedures)
- Short F-up to Evaluate recurrence

Conclusions

- 5 or > episodes: Increase clinically relevant injuries (Bone loss)
- SLAP tears, posterior labral tears similar incidence
- Primary vs recurrent Instability:
 - No difference in recurrence rate (12 months F-up)

