Developments to improve arthroscopic surgical skills training

Dimensionless Squared Jolt (DSJ) and Wider field of view arthroscope (150 degrees)

Kholinne Erica¹,², Gandhi J. Maulik², Kwak Jae-Man³, Koh Kyoung-Hwan³, Jeon In-Ho³

¹Department of Orthopedic Surgery, St. Carolus Hospital, Jakarta, Indonesia
²Upper Limb Department, Robert Jones & Agnes Hunt Hospital, Oswestry, England, UK
³Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan
Erica Kholinne, MD
Presenting Author

I have no financial conflicts to disclose.
Purposes

(1) New parameter: Dimensionless Squared Jolt (DSJ)

Construct validity study: objectively measures arthroscopic skill

\[\left(\int_{t_1}^{t_2} x''''(t)^2 \, dt \right) \ast \frac{D^3}{v_{mean}^2} \]
Purposes

(2) Using DSJ and traditional performance measures to

• investigate the difference wide scope (150-degrees) compared to the traditional scope (105-degrees)
Hypothesis

(1) DSJ is able to serve as an objective parameter for assessing arthroscopic surgical skill

(2) An arthroscope with wider FOV may aid arthroscopic performance as measured by motion analysis, time and DSJ
Materials and Methods

Construct Validity for DSJ

PILOT STUDY

12 Participants
- 6 Novices
- 6 Consultants

13 Novices
- Traditional scope
- Wide Scope
PILOT STUDY – DSJ

CONSTRUCT VALIDITY

TRADITIONAL VS WIDE SCOPE

All novices performed 3 times of standard arthroscopic tasks with traditional scope and wide scope.

- **Task #1**
 Touching the 5 points using grasper

- **Task #2**
 Inserting a suture anchor

- **Task #3**
 Pulling the sutures using grasper

Shoulder dry model with 5 points marker
Pilot study – DSJ construct validity

TABLE 1. The Details of Each Participant’s parameter. Min acc = minimum acceleration; Avg. acc. = average acceleration; Nov = novice; Consult = consultant (consider changing to expert). * = denotes achieved significance.

<table>
<thead>
<tr>
<th></th>
<th>Time taken (s)</th>
<th>Average acceleration (m/s²)</th>
<th>Maximum acceleration (m/s²)</th>
<th>No. of movements (>10m/s²)</th>
<th>No. of movements (avg. acc.)</th>
<th>No. of movements (min. acc.)</th>
<th>Total path length (m)</th>
<th>Range of acceleration (m²/s²)</th>
<th>DSJ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nov</td>
<td>Consult</td>
<td>Nov</td>
<td>Consult</td>
<td>Nov</td>
<td>Consult</td>
<td>Nov</td>
<td>Consult</td>
<td>Nov</td>
</tr>
<tr>
<td>1</td>
<td>62</td>
<td>46</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>86</td>
<td>14</td>
<td>41</td>
<td>14463</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>54</td>
<td>1</td>
<td>1</td>
<td>45</td>
<td>30</td>
<td>27</td>
<td>5</td>
<td>11336</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>52</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>38</td>
<td>0</td>
<td>5</td>
<td>13545</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>64</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>19</td>
<td>19</td>
<td>2</td>
<td>16965</td>
</tr>
<tr>
<td>5</td>
<td>52</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>12844</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>9662</td>
</tr>
</tbody>
</table>

ONLY DSJ parameter shown significant difference
Results
Wide vs Traditional scope

There was a significant difference between the wide-angle and traditional scope as measured by DSJ (P=.0008)

The other parameters did not demonstrate a difference.
CONCLUSIONS

1. Results shown the value of using DSJ in addition to motion analysis and task completion time as a method of objectively assessing arthroscopic performance.

2. Results shown its use in evaluating a new arthroscope, and conclude the wide-angled arthroscope has potential to improve arthroscopic performance.
CLINICAL IMPLICATIONS

1. DSJ is a valid parameter to assess arthroscopic surgical skills.

3. Wide-angled arthroscope provide a superior training tool than traditional arthroscope.
References

