A Novel Concept: Graft Reinforcement in Knee Ligament Reconstruction

J Dabis
SK Yasen
AJ Foster
MJ Risebury
AJ Wilson

ISAKOS, Cancun 2019

Advantages of Synthetics
- No graft site morbidity
- No disease transmission
- 'Off the shelf' availability
- Increased flexibility in multi-ligament reconstruction
- Improved strength – early return to activity

Ideal Scaffold / Augment
- Strong – allow early rehabilitation
- Shield from excessive stress during healing
- Encourage tissue integration
- Biodegrade – without adverse reaction
- Favorable manufacturing and handling characteristics

Disclosures
J Dabis (I have no financial conflicts to disclose)
SK Yasen (This individual reported nothing to disclose)
AJ Foster (This individual reported nothing to disclose)
MJ Risebury (Smith&Nephew: Paid presenter or speaker; Research Support)
AJ Wilson (Arthrex, Inc; IP royalties; Paid consultant; Paid presenter or speaker; Research Support; Newclip: IP royalties; Paid consultant; Paid presenter or speaker)

The Reality....
- Synthetic scaffolds popular in the 1980s & 90s
 - Nylon / Silver / Silk / Polypropylene / Teflon / Carbon / Polyanilamide / Dacron / Silicon / Polyester
- POOR BIO-COMPATIBILITY
 - Synovitis, recurrent instability, immunological response, particulate wear and lysis, chronic effusions
- Negative image of ligament augmentation
Aim

- We present the concept and technique of using a graft suture tape to ‘reinforce’ ligament reconstructions around the knee.
- This technique has been employed at our institution since 2011.
- We term this “graft reinforcement” and maintain this as a distinct entity to internal bracing for native ligament repair, or historical ligament augmentation.
- This series serves as validation of a proof of concept for ligament reinforcement, as well as reviewing the safety profile of such an approach in clinical practice.

What is FibreTape?

- 2 mm width non-biodegradable tape
- UHMW polyethylene terephthalate core with braided polyester jacket
- Proven track record in shoulder surgery
 - RC repairs
 - ACJ reconstruction

Safety Profile

- 1,586,369 units sold Jul 2003 - Jan 2016
 - Range of products and applications
- 27 ‘potential’ FibreTape reactions
 - 1.7 per 100,000
 - Likely lower

Patients and Methods

- All patients who underwent knee ligament reconstruction between June 2011 and June 2017 were identified from a prospectively maintained ligament database
- Patients who underwent ligament reconstruction which were reinforced (RLR) were included in the study
- Skeletally immature patients were excluded from the study
- The RLR cohort was then independently interrogated. Three separate cohorts were generated according to whether reinforcement had been used for intra or extra-articular reconstructions or combined
Group Analysis & Indications

- **Group 1** – Reinforced Intra-articular graft Ligament Reconstruction (RILR)
- **Group 2** – Reinforced Combined (Intra & Extra-articular) graft Ligament Reconstruction (RCLR)
- **Group 3** – Reinforced Extra-articular graft Ligament Reconstruction (RELR)

Graft reinforcement is used in the following settings:
- Hamstring tendon autograft for ACL reconstruction measuring less than 7.5mm in diameter
- Hamstring tendon autograft ACL reconstruction in patients over 50 years
- All allograft tendon reconstructions (intra and extra-articular)
- All grafts used for PCL reconstructions (autograft and allograft)
- Patients presenting with a collagen/connective tissue disorder
- Considered in elite athletes in pivoting sports

<table>
<thead>
<tr>
<th>Results</th>
<th>Group 1 (RILR)</th>
<th>Group 2 (RCLR)</th>
<th>Group 3 (RELR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total numbers in tables</td>
<td>120</td>
<td>151</td>
<td>11</td>
</tr>
<tr>
<td>Male patients</td>
<td>79</td>
<td>118</td>
<td>8</td>
</tr>
<tr>
<td>Autografts</td>
<td>95</td>
<td>130</td>
<td>5</td>
</tr>
<tr>
<td>Allografts</td>
<td>23</td>
<td>65</td>
<td>4</td>
</tr>
<tr>
<td>Revisions</td>
<td>15</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>Autografts with diameter of微创s</td>
<td>47</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Surgical procedures</td>
<td>52</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>Healing processes</td>
<td>7</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Late postoperative problems</td>
<td>52.8</td>
<td>58.7</td>
<td>66.8</td>
</tr>
<tr>
<td>Revisions rate (%)</td>
<td>5</td>
<td>7.2</td>
<td>9.1</td>
</tr>
<tr>
<td>Proximal rate (%)</td>
<td>3.3</td>
<td>6.1</td>
<td>0</td>
</tr>
<tr>
<td>Autograft rate of Reinforced autograft primary ACL reconstructions (%)</td>
<td>3.6</td>
<td>6.9</td>
<td>9</td>
</tr>
</tbody>
</table>

PROMs

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Pre-op</th>
<th>Post-op</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOOS</td>
<td>57.2</td>
<td>76.4</td>
<td>80.0</td>
</tr>
<tr>
<td>Lysholm</td>
<td>53.5</td>
<td>77.5</td>
<td>80.7</td>
</tr>
<tr>
<td>Tegner</td>
<td>2.1</td>
<td>3.7</td>
<td>4.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 2</th>
<th>Pre-op</th>
<th>Post-op</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOOS</td>
<td>52.4</td>
<td>76.4</td>
<td>80.0</td>
</tr>
<tr>
<td>Lysholm</td>
<td>48.3</td>
<td>78.8</td>
<td>80.0</td>
</tr>
<tr>
<td>Tegner</td>
<td>2.4</td>
<td>4.2</td>
<td>2.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 3</th>
<th>Pre-op</th>
<th>Post-op</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOOS</td>
<td>44.9</td>
<td>78.8</td>
<td>80.0</td>
</tr>
<tr>
<td>Lysholm</td>
<td>46.3</td>
<td>85.0</td>
<td>80.1</td>
</tr>
<tr>
<td>Tegner</td>
<td>2.4</td>
<td>4.0</td>
<td>2.15</td>
</tr>
</tbody>
</table>

Hampshire Hospitals

3/25/19
Conclusion

We have demonstrated graft reinforcement is a concept which is safe, technically reproducible and may reduce graft failure rates, especially in complex multiligament knee reconstruction.

References
1 Arthroscopy. 2018 Feb;34(2):490-499.

Internal Suture Augmentation Technique to Protect the Anterior Cruciate Ligament Reconstruction Graft. Aboulata M, Elazab A, Halawa A, Imhoff AB, Bassioni Y.

Allograft Anterior Cruciate Ligament Reconstruction Utilizing Internal Suture Augmentation. Smith PA, Bley JA.