Magnetic resonance study of vastus medialis: comparison between patellar instability and controls.

Authors:

Riccardo Gomes Gobbi, MD, Ph.D.
Paulo Renan Lima Teixeira, MD.
Betina Bremer Hinckel, MD, Ph.D.
Pedro Nogueira Giglio, MD.
José Ricardo Pécora, MD, PhD.
Gilberto Luis Camanho, MD, Ph.D.
Marco Kawamura Demange, MD, Ph.D.
The authors declare that there are no conflict of interests or financial support/grants for this study
Patellofemoral Joint

INTRODUCTION

• Complex anatomy

OBJECTIVE

• Complex biomechanics

METHODS

• Complex clinical presentations
 – Pain
 – Instability

RESULTS

DISCUSSION

CONCLUSION

gobbiortopedia@gmail.com
Patellofemoral Joint

INTRODUCTION

- Main risk factors for PF pathology
 - Q angle
 - Patellar height
 - Trochlear dysplasia
 - Quadriceps dysplasia??

CONCLUSION
Vastus medialis

- Vastus medialis longus/obliquus (VMO)
 - Lieb, JBJS Am, 1968.

- VMO: individual nerve supply
 - From femoral and saphenous nerves

- VMO: central patellar insertion, 50º
 - Pagnano, CORR, 2006.
Vastus medialis

INTRODUCTION

- Vastus medialis obliquus weakness leads to lateral patellar shift and tilt, and pain

- Relation to MPFL dynamics
 - Panagiotopoulos, KSSTA, 2006.
Vastus medialis

- Deserves investigation

- VM patellar instability x controls ???
 - MRI 20 patients
 - VM insertion higher in patients with instability
Objective

• Compare the anatomy of vastus medialis origin at the femur and insertion at the patella in patients with patellar instability and controls.
Methods

• Patellar instability group
 – At least 1 complete dislocation

• Control group
 – ACL, meniscal lesions or sprains

• Groups matched for sex, only age>15 (mature)

<table>
<thead>
<tr>
<th></th>
<th>Instability N=78</th>
<th>Control N=78</th>
<th>P=0.001 Wilcoxon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>25.6 ± 7.5</td>
<td>30.2 ± 7.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range 15-47</td>
<td>Range 15-49</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>48 (61.5%)</td>
<td>48 (61.5%)</td>
<td>P=1 Chi square</td>
</tr>
</tbody>
</table>
Methods

• Measurements
 – VASTUS ORIGIN-CONDYLAR DISTANCE
 • Sagital image, more distal vastus medialis insertion at fêmur to proximal end of medial condyle cartilage
• Measurements

 - VASTUS PATELLAR INSERTION FROM PROXIMAL POLE RATIO
 - Sagital image, patellar articular surface length, distance from proximal pole to the last axial cut with vastus medialis muscle

Lenght: 1.51cm
Methods

- Measurements
 - VASTUS MUSCLE INSERTION SITE:
 - DIRECT PATELLAR INSERTION (A and B)
 - MEDIAL RETINACULUM (C and D)
 - Axial image, check if vastus MUSCLE touches patella at any cut
Methods

• Measurements
 – All made in HOROS free DICOM medical image viewer
 – Interobserver analysis
 – ICC calculated for linear variables
 – Kappa calculated for categorical variable
Results

Data analysis

<table>
<thead>
<tr>
<th></th>
<th>Instability N=78</th>
<th>Control N=78</th>
<th>p</th>
<th>ICC / Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vastus origin – condylar distance</td>
<td>26.59mm ± 3.43 95% CI 25.8-27.4</td>
<td>27.52mm ± 3.49 95% CI 26.7-28.3</td>
<td>0.041 Wilcoxon</td>
<td>0.59 Fair 95% CI 0.29-0.78</td>
</tr>
<tr>
<td>Vastus patellar insertion</td>
<td>15.02mm ± 4.18 95% CI 14.1-15.9</td>
<td>17.59mm ± 5.54 95% CI 16.3-18.8</td>
<td><0.001 Wilcoxon</td>
<td>0.69 Good 95% CI 0.43-0.84</td>
</tr>
<tr>
<td>Vastus patellar insertion ratio</td>
<td>0.48 ± 0.13 95% CI 0.45-0.51</td>
<td>0.59 ± 0.18 95% CI 0.54-0.63</td>
<td><0.001 T test</td>
<td>-</td>
</tr>
<tr>
<td>Retinacular insertion</td>
<td>59 (75.6%)</td>
<td>41 (52.6%)</td>
<td>0.003 (x²) Odds ratio = 2.8</td>
<td>0.8 Excellent Kappa</td>
</tr>
</tbody>
</table>
Discussion

- First study (to extent our knowledge) to clearly show vastus medialis anatomic differences between instability x controls

- Confirms hypothesis of “dysplastic muscle”
 - More proximal insertion
 - 48% (proximal half) x 59% (distal half)
 - More often not attaching directly to patella
 - 75.6% x 52.6%
Discussion

• Balcarek et al, Biomed Res Int, 2014
 – 30 acute primary dislocation
 – 30 recurrent dislocations
 – 22 controls
 – Cross sectional area VMO, muscle fiber angulation and distance of patellar insertion from proximal pole (not the ratio!)
 – No significant differences
Discussion

• Vastus origin condylar distance
 – Attempt to evaluate vastus medialis inclination
 • (higher femoral origin would mean more vertical fibres)
 – Results against this assumption (higher in controls)
 – ICC 0.59 (fair)
 – Authors did not consider it an adequate parameter

• Vastus patellar ratio and direct muscle insertion at patella
 – more patellar coverage by muscle mean increased medial pull in theory
Discussion

• Limitations

– Effect on patellar positioning not evaluated

– Does not investigate clinical relevance

– Does not define normal values for general population

– Cannot determine if vastus difference is cause or consequence of dislocation (case-control study)
Discussion

• Possible clinical implications

– Patients with more distal and direct patellar insertion of vastus medialis may respond better to physical therapy?

– Adds to current knowledge for adequate vastus medialis insertion repair after patellofemoral surgery
 • Consider normalization of vastus insertion
 – below half the patellar chondral surface
 – bony instead of retinacular insertion of muscle fibers
 • Normalization is not excessive lateralization such as Insall procedure
Conclusion / Take home message

- Vastus medialis distal insertion differed significantly in patellar instability patients, with a more proximal insertion with less patellar coverage, and a more frequent insertion of the muscle fibers to the retinaculum and not directly to the bone.
THANK YOU