Safety and Effectiveness of Coblation (Radio Frequency Plasma) for Knee Chondroplasty
A Multi-Center Prospective Randomized Controlled Clinical Study

David FLANIGAN, Christopher KAEDING, Jack FARR, Douglas ROESSHOT, Thomas ELLIS, Paul SENSIBA, Nebojsa SKREPNIK, Scott SLAGIS, Brian NIELSEN, Lawrence HOUSMAN, Christopher O'GRADY, Charles ROTH, Roger OSTRANDER

Clinical Sites: OrthoIndy (IN), Basin Orthopedic Surgical Specialists (TX), JDP Medical Research (CO), Tucson Orthopaedic Institute (AZ), Methodist Center for Orthopaedic Surgery (TX), Anne Arundel Health System Research Institute (MD), University Orthopedics Center (PA), Andrews Research and Education Institute (FL), The Ohio State University Wexner Medical Center (OH)
All disclosures for all faculty are documented in the Program

Lead author disclosures:
- Consultant: Smith & Nephew, Depuy Mitek, Vericel, Moximed, Zimmer-Biomet, Conmed-Linvatec-MTF, Histogentics, Cartilife
- Research Support: Smith&Nephew, Vericel, Aesculap, Anika Therapeutics, CartiHeal, Zimmer-Biomet

This clinical trial was sponsored by Smith & Nephew.
Articular cartilage defects are commonly detected during arthroscopy when treating knee pathology such as a torn meniscus or damaged anterior cruciate ligament. 60% to 70% subjects having arthroscopic knee surgery who have concomitant chondral lesions1,2,3

Traditional treatment: Mechanical debridement Control (MC)
Other possible treatment: Latest Radiofrequency (RF)-based technology based on Plasma generation (CoblationTM)

The impact of RF-based chondroplasty compared to mechanical debridement over time has not been evaluated with magnetic resonance (MR) imaging

Hypothesis: Radiofrequency (RF) chondroplasty would be as safe as MC with no adverse events on MR imaging or patient reported outcomes

1Figueroa D, Calvo R, Vaisman A, Carrasco MA, Moraga C, Delgado I. Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy 2007; 23(3):312-315.
STUDY DESIGN: Prospective, randomized clinical trial
9 enrolling sites in the US

SAMPLE SIZE:

57 subjects requiring arthroscopic treatment (*)

(*) Note: target sample size was higher but was not met due to slow study enrolment

INCLUSION/EXCLUSION CRITERIA:

- Included: single medial femoral chondral lesion (ICRS Grade 3A) + partial medial meniscectomy
- Excluded: multiple chondral lesions, ACL replacement patients, revision surgeries, higher grade (full-thickness) cartilage lesions

All subjects received an ICF and a verbal explanation from the Investigator (or designee) about the nature of the study, its purpose, procedures, expected duration and benefits, and risks of participation.
Available MRI imaging: Axial/Coronal/Sagittal PD FS, Coronal T1, Sagittal T2 FS, 3D sagittal T1 SPGR, and Sagittal T2 Mapping. Required 3 Tesla for MRI equipment

MR Time Points: PreOp, PostOp (10 days), 52 Weeks (1 year), 104 Weeks (2 years)

Imaging endpoints analyzed:
- % Lesion fill (PLF)
- Change in Percentage Lesion Fill (PLF)
- Quantitative and semi-quantitative scoring of knee morphology: MOAKS\(^1\), WORMS\(^2\), ICRS\(^3\)
- T2 mapping analysis of Cartilage tissue quality
- Adverse events (bone marrow abnormality, MOAKS abnormal cartilage, cysts, bone changes)

Patient Reported Outcomes: KOOS, IKDC, SF-12, EQ-5D-5L, VAS, Subject Satisfaction

SAFETY RESULTS:
• No device-related adverse events in either group at any time point
• No adverse MRI findings in either group at any time point

PERFORMANCE RESULTS:
• Post-operatively, imaging analysis showed no significant differences in the Percent Lesion Fill (PLF) between the two study groups.
• The overall differences in change of PLF at any visit (week 52 and 104) were not significant (P>0.05) between the treatment groups.
Main Results: Patient Outcome scores

- Mean KOOS scores improved in both treatment groups from the pre-operative status to each study visit.

- This improvement in KOOS scores was greater in subjects randomized to RF-based debridement for pain only at Weeks 12 and 24.

- No evidence of significant difference in overall KOOS scores between the groups at any visit.
Trend of improvement (not significant (p=0.07)) in the KOOS Sports/Recreation subscale with an increase in PLF between the postoperative baseline and Week 52 visits.
Chondroplasty with Coblation

Intra-op visualization of ICRS grade 3A lesion and fibrillation

Intra-op visualization of lesion after debridement with Coblation
Chondroplasty with Coblation
Example of MR Changes Over Time

Post Op: PLF = 45.2% @52Week: PLF change - 2.9% @104Week: PLF change +12.2%
Mechanical debridement
Example of MR Changes Over Time

Post Op: PLF = 49.0% @52Week: PLF change - 4.6% @104Week: PLF change - 20.7%
In this RCT with over 2 yr. follow up (MR and PROs):

- MR and PROs similar between 2 groups
- **No device-related adverse events** from RF (Coblation)
- No adverse MRI findings in either Coblation or Mechanical
- May be correlation between structural properties and functional outcomes (trend of improvement with RF)

- **More clinical evidence is needed to understand long-term effects of knee chondroplasty**

LIMITATIONS:

- Target sample size was not met due to slow patient enrolment
- Results generated for Coblation (RF-based plasma technology) cannot be translated to other bipolar radiofrequency technologies