Macroscopic And Histological Evaluation During Repair Process Of Porcine Meniscus Defect Treated By Mechanically Reinforced Atellocollagen Substitute From 1 To 9 Months After Implantation.

Hiroyuki Yokoi¹, Yasuhiro Take¹, Tatsuo Mae²
Kazunori Shimomura¹, Tomoki Ohori², Yuta Tachibana³
Seira Sato¹, Hideki Yosikawa², Ken Nakata¹

1) Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine.
2) Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine.
3) Sports Orthopaedic Surgery Center, Yukioka Hospital.
Problems of treatment for meniscal defect

✅ The defect remains after meniscal repair.
 → Difficult to restore meniscal function

✅ The risk of knee osteoarthritis increases after meniscectomy

Fairbank TL. JBJS-B 1948
Novel mechanically-reinforced atelo-collagen substitute for meniscal defect treatment

- Since currently there is no gold standard treatment for meniscal defect, we have newly developed a mechanically reinforced atelocollagen substitute applicable for such defect.

Atelo-Collagen Meniscal Scaffold - ACMS -

- **Material:** Bovine Type-I atelo-collagen
- **Structure:** 30-200μm inter-connected pore structure
- **Stiffness:** Comparable to the normal meniscus

Materials & Methods

- Fourteen miniature pigs (28 knees) (10-12 months old, 35-57 kg)
- 3x8 mm defect at the anterior segment of MM
- Fill the defect with ACM by suture.
- Evaluate macroscopically and histologically at 2, 4, 8, 12, 24, 36 weeks after surgery. (n = 4 / group, n = 8 / only 24 week group)
Macroscopic evaluation — grade —

- Healing maturity were macroscopically evaluated and graded from grade I to grade III.

1: Adjacent synovial tissue

- grade I: Nearly normal
- grade II: Reactive
- grade III: Proliferation

2: Remodeling of ACMS

- grade I: Complete replaced
- grade II: Partially replaced
- grade III: Remaining the ACMS

3: Bonding to the host tissue

- grade I: Complete bonding
- grade II: Partial bonding
- grade III: No bonding

4: Meniscal deformation

- grade I: Nearly normal
- grade II: Mild deformation
- grade III: Extensive deformation
Results 1

Macroscopic evaluation

<table>
<thead>
<tr>
<th>Time (W)</th>
<th>Remained ACMS</th>
<th>synovial proliferation</th>
<th>Boundary indistinctness</th>
<th>Replace from the periphery part</th>
<th>Replaced with repaired tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: Adjacent synovial tissue

2: Remodeling of ACMS

3: Bonding to the host tissue

No meniscal deformation at all time points
The border of substitute was filled with synovial tissue and the substitute were infiltrated with cells at 1 month. The central part of the substitute was infiltrated with cells, and the substitute was absorbed partially at 2 month.
The majority of the substitute was replaced with fibrous tissue at 3 months. The substitute was almost replaced with a meniscus like tissue containing fibrocartilage-like cells, which was positive with safranin O staining at 9 months.
The ideal role of meniscus material

1. Scaffold for migrating cells

2. Compensation for the meniscal function
 - Maier D et al. J Orthop Res. 2007
Effectiveness of ACMS as scaffold for infiltration cells

① Synovial tissue proliferated and filled ACMS

② Cells infiltrated and ACMS was replaced

③ Regeneration to meniscus-like tissue
Effectiveness of ACMS as compensation of meniscal biomechanical function

No meniscal deformation
Conclusion

The ACMS was infiltrated by newly synthesized cell-rich tissue after 2 weeks and was replaced with meniscal-like tissue from 12 weeks to 36 weeks without deformation, suggesting that the ACMS might function as a scaffold for migrating cells and a load transfer material.