Enhanced Repair of Meniscal Hoop Structure Injuries Using An Aligned Electrospun Nanofibrous Scaffold Combined with a Mesenchymal Stem Cell-derived Tissue Engineered Construct

Kazunori Shimomura MD PhD ¹,
Benjamin B. Rothrauff MD PhD ², David A. Hart PhD ³,
Shuichi Hamamoto MD ¹, Masato Kobayashi MD ¹,
Hideki Yoshikawa MD PhD ¹, Rocky S. Tuan PhD ²,
Norimasa Nakamura MD PhD ¹,⁴,⁵

1. Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
2. Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, PA, USA
3. McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada
4. Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
5. Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
Kazunori Shimomura, MD, PhD
I have no financial conflicts to disclose.
Hoop structure injury (1)

- Symptomatic
- Limited healing (due to avascular zone injury)
- Loss of meniscal biomechanical function
- Meniscectomy in many cases

No established, effective treatments
Potential risks for OA development

e.g. radial tear
Electrospun scaffold (2)

✓ Aligned fiber
✓ Biocompatibility
✓ Slow bioabsorbability
✓ High tensile strength

poly(ε-caprolactone) (PCL)-based electrospun scaffold

Repair enhancement for radial tear using a clinically relevant in vitro meniscal explant model (3)
Hypothesis & Purpose

✓ Wrapping the meniscal tear with the cell-seeded aligned electrospun scaffold could be a potential, clinically relevant approach (3).

Feasible for the repair of hoop structure?

Test this hypothesis using a rabbit meniscal defect model

Developement of a new surgical method
Methods

Control

Medial meniscus

Scaffold

5mm width defect

Scaffold augmented w/ or w/o TEC*

TEC-Scaffold

Scaffold

Meniscus

*A scaffold-free tissue-engineered construct (TEC) derived from synovial mesenchymal stem cells (4)
Outcome Measures

• Chondroprotective effect
 - Macro & Histology for MFC cartilage

• Meniscal repair & Hoop function
 - Macro & Histology for medial meniscus
 - Ratio of meniscal uncovered area*

• Evaluation @ 4, 8, 12 wks p/o

*Meniscal uncovered area (%) = A / B x 100
(Representing “meniscal extrusion”)

Meniscal uncovered area
whole cartilage area on MTP
Macroscopic evaluation of MFC cartilage

Control & Scaffold ▷ Accelerated OA development
TEC-Scaffold ▷ Chondroprotection

Macroscopic score

<table>
<thead>
<tr>
<th></th>
<th>4w</th>
<th>8w</th>
<th>12w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Scaffold</td>
<td>2.2</td>
<td>2.7</td>
<td>3.2</td>
</tr>
<tr>
<td>TEC-Scaffold</td>
<td>1.8</td>
<td>2.2</td>
<td>2.5</td>
</tr>
</tbody>
</table>

*; p < 0.05

12 wks p/o
Histology of MFC cartilage

Control | Scaffold | TEC-Scaffold

OARSI histological score

- Control
- Scaffold
- TEC-Scaffold

Best score = 0
Worst score = 24
*: p<0.05

Control & Scaffold ▷ Accelerated OA development
TEC-Scaffold ▷ Chondroprotection
Macroscopic evaluation of repair meniscus

Control | Scaffold | TEC-Scaffold

12 wks p/o

Ratio of meniscal uncovered area (%)

- Control
- Scaffold
- TEC-Scaffold

*; p < 0.05

TEC-Scaffold ▷ Repair and stabilization of hoop structure integrity
Histology of repair meniscus

Control | Scaffold | TEC-Scaffold

H&E | |

Saf O | |

Dashed arrows indicate the repair tissue.
Bar = 1mm

12 wks p/o

TEC-Scaffold ▷ Repair tissue around the implanted material with positive Saf O staining in inner zone
Discussion & Conclusion

• An electrospun nanofiber scaffold combined with an MSC-based TEC exhibited good potential for repair of meniscal defects, with maintenance of meniscal hoop structure function, as well as evidence for a chondroprotective effect.

• The present technique to repair damaged meniscal hoop structure integrity could contribute to the development of a new meniscal repair technique for a disruption of hoop fibers (e.g., radial tear) with potential for high clinical relevance (5).
References

