Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

Nakama GY1,2,3, Kaleka CC4, Franciozi CE2, Astur DC2, Debieux P2, Krob JJ1, Aman ZS1, Kemler BR1, Storaci HW1, Dornan GJ1, Cohen M2,4, LaPrade RF5,6

1Steadman Philippon Research Institute, Vail, CO, USA
2Departament of Orthopedics and Traumatology, Universidade Federal de São Paulo, SP, Brazil
3Instituto Brasil de Tecnologias da Saúde, Rio de Janeiro, RJ, Brazil
4Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
5The Steadman Clinic, Vail, CO, USA
6Twin Cities Orthopedics, Edina, Minnesota
Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

<table>
<thead>
<tr>
<th>Name</th>
<th>Financial Conflicts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilberto Y. Nakama, MD</td>
<td>No financial conflicts to disclose</td>
</tr>
<tr>
<td>Camilla C. Kaleka, MD</td>
<td>No financial conflicts to disclose</td>
</tr>
<tr>
<td>Carlos E. Franciozi, MD, PhD</td>
<td>Consultant for Smith & Nephew</td>
</tr>
<tr>
<td>Diego C. Astur, MD, PhD</td>
<td>No financial conflicts to disclose</td>
</tr>
<tr>
<td>Pedro Debieux, MD, PhD</td>
<td>No financial conflicts to disclose</td>
</tr>
<tr>
<td>Joseph J. Krob, BA</td>
<td>No financial conflicts to disclose</td>
</tr>
<tr>
<td>Zachary S. Aman, BA</td>
<td>No financial conflicts to disclose</td>
</tr>
<tr>
<td>Bryson R. Kemler, MS</td>
<td>No financial conflicts to disclose</td>
</tr>
<tr>
<td>Hunter W. Storaci, MS</td>
<td>No financial conflicts to disclose</td>
</tr>
<tr>
<td>Grant J. Dornan, MS</td>
<td>No financial conflicts to disclose</td>
</tr>
<tr>
<td>Moises Cohen, MD, PhD</td>
<td>International consultant for Arthrex</td>
</tr>
<tr>
<td>Robert F. LaPrade, MD, PhD</td>
<td>Consultant and receives royalties from Arthrex, Ossur and Smith & Nephew</td>
</tr>
</tbody>
</table>
Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

Background: Due to a variety of suturing techniques for bucket-handle meniscal repair, it is important to assess which suturing technique best restores native biomechanics.
Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

Purpose/Hypothesis: To biomechanically compare vertical mattress and cross-stitch suture techniques, in single- and double-row configurations, in their ability to restore native knee kinematics in a bucket-handle medial meniscus tear model. Our hypothesis was that there would be no difference between the vertical mattress and cross-stitch double-row suture techniques, but that the double-row technique would provide significantly improved biomechanical parameters compared to the single-row technique.
Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

Methods: Ten matched pairs of human cadaver knees were randomly assigned to vertical mattress (n = 10) or cross-stitch (n = 10) repair groups. Each knee underwent four consecutive testing conditions: (1) intact, (2) displaced bucket-handle tear, (3) single-row suture configuration on the femoral meniscus surface, and (4) double-row suture configuration (repair of both femoral and tibial meniscus surfaces).
Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

Methods: Knees were loaded with a 1000 N axial compressive force at 0°, 30°, 60°, 90° and 120° of flexion for each condition. Resultant medial compartment contact area, average contact pressure, and peak contact pressure data were recorded.

A) Anterior view of the medial condyle osteotomy in a right knee, B) Anterior view of testing setup in a right knee depicting a medial condyle osteotomy, C) Anterior view of testing setup with right knee at 0° flexion and D) Posterior view of testing setup with right knee at 0° flexion.
Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

Results: Intact state contact area was not restored at 0° (P = 0.027) for the vertical double-row configuration and at 0° (P = 0.032), 60° (P < 0.001) and 90° (P = 0.007) of flexion for the cross-stitch double-row configuration. No significant differences were found in the average contact pressure and peak contact pressure between the intact state and the vertical mattress and cross-stitch repairs with either single- and double-row configurations at any flexion angles. When comparing the vertical and cross-stitch repairs across all flexion angles, no significant differences were observed in single-row configurations, but in double-row configurations, cross-stitch repair resulted in a significantly decreased contact area, average contact pressure and peak contact pressure (all P < 0.001).
Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

Results: Medial compartment contact area

A) Medial compartment contact area in the vertical mattress repair testing group and B) cross-stitch repair group for a bucket handle medial meniscus at all flexion angles. (* denotes p < 0.05)
Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

Results: Medial average contact pressure

Medial average pressure in the vertical repair testing group and B) the cross-stitch repair group for a bucket handle medial meniscus at all flexion angles. (* denotes $p < 0.05$)
Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

Results: Medial peak contact pressure

Medial peak pressure in the cross-stitch repair testing group and B) cross-stitch repair group for a bucket handle medial meniscus at all flexion angles. (* denotes p < 0.05)
Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

Conclusion: Single- and double-row configurations of both vertical mattress and cross-stitch inside-out meniscal repair techniques restored native tibiofemoral pressure after a medial meniscus bucket-handle tear at all assessed knee flexion angles. Despite decreased contact area using a double-row configuration, mainly related to the cross-stitch repair, in comparison to the intact state, the cross-stitch double-row repair led to decreased pressure in comparison to the vertical double-row repair. These findings are only applicable at the time of the surgery.

Clinical relevance: Medial meniscus bucket-handle tears may be repaired with either single- or double-row configurations of either vertical mattress or cross-stitch sutures.
Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

References:

Biomechanical comparison of vertical mattress and cross-stitch suture techniques, and single- and double-row configurations, for the treatment of bucket-handle medial meniscus tears.

References:

