Comprehensive MRI Assessment Of Femoral Tunnel Placement In Anterior Cruciate Ligament Reconstruction

ISAKOS Congress 2025

Yasutoshi Ikeda, Shinichiro Okimura, Kazushi Horita, Kodai Hamaoka, Yohei Okada, Tomoaki Kamiya, Hidenori Otsubo, Atsushi Teramoto

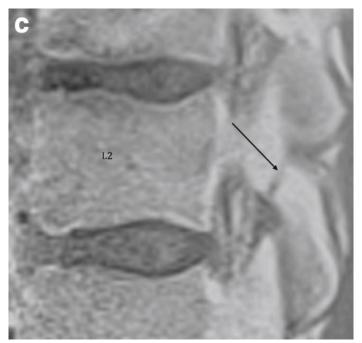
Department of Orthopedic Surgery, Sapporo Medical School of Medicine, Sapporo, Hokkaido, JAPAN

Conflict of Interest Disclosure

Yasutoshi Ikeda

ISAKOS congress 2025

The author declares no conflicts of interest related to this presentation.


Bone-like image using MRI

MRI: Not suitable for evaluating bone morphology

2016 – Ang et al. reported high diagnostic accuracy for lumbar spondylolysis

(sensitivity: 96.7%, specificity: 92.0%).

2021 - Johnson et al. introduced an imaging protocol called FRACTURE (by Philips).

Ang E.C.et al. Skeletal Radiol. 2016.

Johnson B et al. Skeletal Radiol. 2021.

ACL injury

Many adolescent patients for whom radiation exposure should be avoided

Younger patients have higher sensitivity to radiation

Brener J.et al. N Engl J Med. 2007.

Australian registry: CT scans in youth linked to higher cancer risk

Mathews JD.et al. BMJ. 2013.

JRS (2019): Highlights special considerations for pediatric/adolescent imaging

Significance of Bone Tunnel Location in Ligament Reconstruction

Markolf .et al. J Orthop Res. 2002.

Fu FH.et al. CORR. 2009.

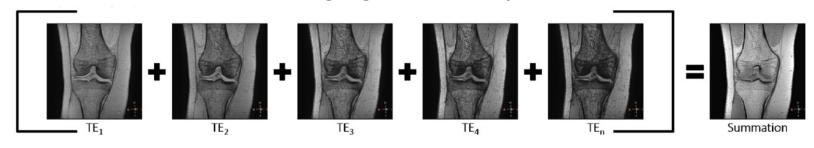
Shino K .et al. Operative Techniques in Orthopaedics. 2008.

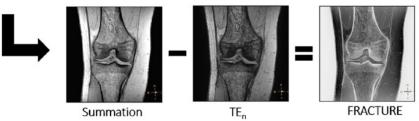
Bone Tunnel Evaluation Without Radiation: Is MRI the Answer?

Purpose

To compare bone tunnel evaluation using MRI with conventional CT-based assessment

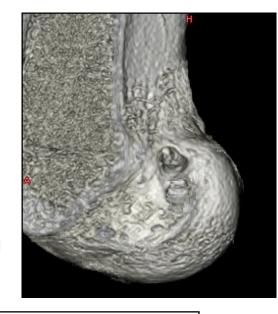
Subjects


22 cases (22 knees) after anatomical ACL reconstruction with semitendinosus tendon, imaged with both CT and 3.0T MRI.


Methods~Imaging Protocol~

FRACTURE(**F**ast field echo **R**esembling **A C**T **U**sing **R**estricted **E**cho-spacing)

- •Imaging: 3D multi-echo fast gradient echo sequence
- Echoes acquired and summed
- •Final image generated by black—white inversion



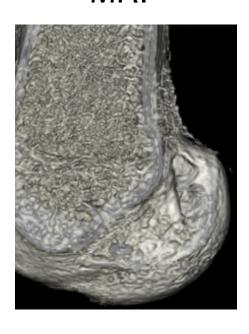
2nd Post-processing Step: Subtraction

3D Image Reconstruction

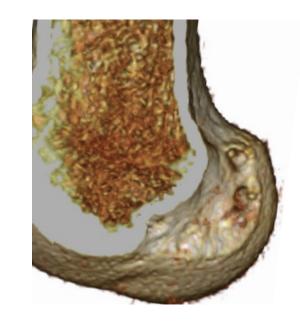
MRI System: 3.0T scanner (Ingenia, Philips)

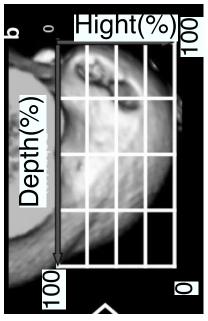
Imaging Parameters: TR = 30 ms, TE = 2.3 ms, Δ TE = 2.3 ms, FA = 15°

Voxel size = $0.59 \times 0.59 \times 0.60$ mm


Scan time $= 5 \min 26 \sec$

Methods~Bone Tunnel Evaluation~

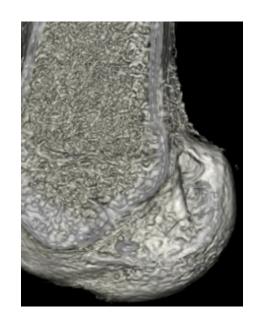

FRACTURE


MRI

TC

Quadrant methods

Bernand M .et al. Am J Knee Surg. 2002


Quadrant method used to assess AM/PL bundle centers from 3D images

Methods~Reliability Assessment~

•Evaluators: 3 orthopedic specialists

•Assessment: Interrater reliability of AM/PL tunnel centers

•Statistical method: ICC (2,1)

Evaluators:

3 orthopedic surgeons

Interrater reliability:

ICC (2,1)

•Software:

R

(The R Foundation)

9

Results - MRI vs. CT Comparison

		MRI (%)	CT (%)	p value	(paired t test,
AM	Depth(D)	14.5 ± 2.3	15.8 ± 2.3	0.15	<0.05)
	Height(H)	22.9 ± 9.6	22.8 ± 9.1	0.44	
PL	Depth(D)	23.1 ± 4.1	29.1 ± 9.2	0.14	
	Height(H)	52.1 ± 5.8	53.3 ± 8.2	0.30	

No Significant Difference

Results~Reliability Assessment~

ICC (2,1) by three orthopedic specialists

AM bundle:

0.878

 $(95\% \text{ CI} : 0.696 \sim 0.965)$

PL bundle:

0.961

 $(95\% \text{ CI}: 0.883 \sim 0.989)$

High ICC Values

Discussion~Bone-like MRI Imaging~

Used for diagnosis (e.g., spondylolysis, avulsion fractures)

Ang E.C.et al. Skeletal Radiol. 2016.

Johnson B et al. Skeletal Radiol. 2021.

Rarely reported for postoperative evaluation

This study:

MRI enabled evaluation of bone tunnel positions in anatomic ACL reconstruction.

The accuracy was comparable to CT-based assessment. High interrater reliability was observed.

MRI-Based Tunnel Evaluation Is Feasible,

Discussion ~Future Plan~

Key Benefit: Zero Radiation Exposure

- Applicable to adolescents with high sensitivity to radiation
- Allows for repeated imaging
 - → Evaluation of tunnel **enlargement** before/after ROM exercises before/after weight-bearing
- •Enables more detailed assessment of the relationship between graft and bone tunnel

- Identify causes of tunnel enlargement
- Reconsider postoperative rehabilitation

Conclusion

- •Bone tunnel positions after anatomic ACL reconstruction (22 knees in 22 patients) were compared using 3D images derived from both MRI and CT.
- •MRI and CT yielded nearly equivalent tunnel positions when evaluated with the quadrant method, and interrater reliability was very high.
- •MRI-based femoral tunnel assessment, free from radiation exposure, demonstrated comparable accuracy to conventional CT evaluation.