

Difference in the Prevalence of On-Track and Off-Track Lesions Amongst Males and Females with Shoulder Instability

Jillian Mazzocca¹, BA, USA

Giovanna Medina¹, MD.; Brian Tao¹, BA; Serafina Zotter¹, BS; Elizabeth Matzkin¹, MD.

¹Mass General Brigham, Department of Orthopedic Surgery

Authors & Disclosure Information

Disclosure(s) are as follows:

Jillian Mazzocca, BA: No disclosures to report.

Giovanna Medina, MD: Consultant for Smith & Nephew; Consultant for Vericel.

Brian Tao, BA: No disclosures to report.

Serafina Zotter, BS: No disclosures to report.

Elizabeth Matzkin, MD: Consultant for Arthrex; Editorial board member for Arthroscopy Journal.

Purpose & Hypothesis

Purpose

To determine the prevalence of on-track and off-track Hill-Sachs lesions (HSL) amongst male and female patients with shoulder instability.

Hypothesis

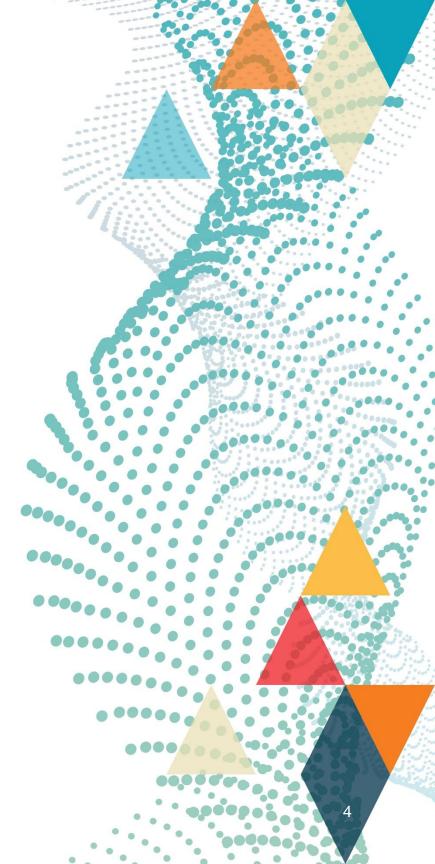
Females will have more on track-lesions in comparison to males.

Methods

Retrospective analysis of a clinical series of consecutive patients who underwent a shoulder MRI during a workup for anterior glenohumeral instability between January 2021 and January 2024.

The database was searched using **Research Patients Data Registry (RPDR) Mass General Brigham (MGB)** CPT codes and ICD-9/10.

Inclusion criteria included patients between 13 and 35 years old with anterior shoulder instability.


Exclusion criteria included subjects with no preoperative MRI, posterior instability, an isolated superior labrum anterior to posterior (SLAP) tear, a proximal humerus fracture, a rotator cuff tear, multidirectional instability, or a reverse Hill-Sachs lesion.

Each patient's medical record was reviewed to retrieve clinical and demographic data.

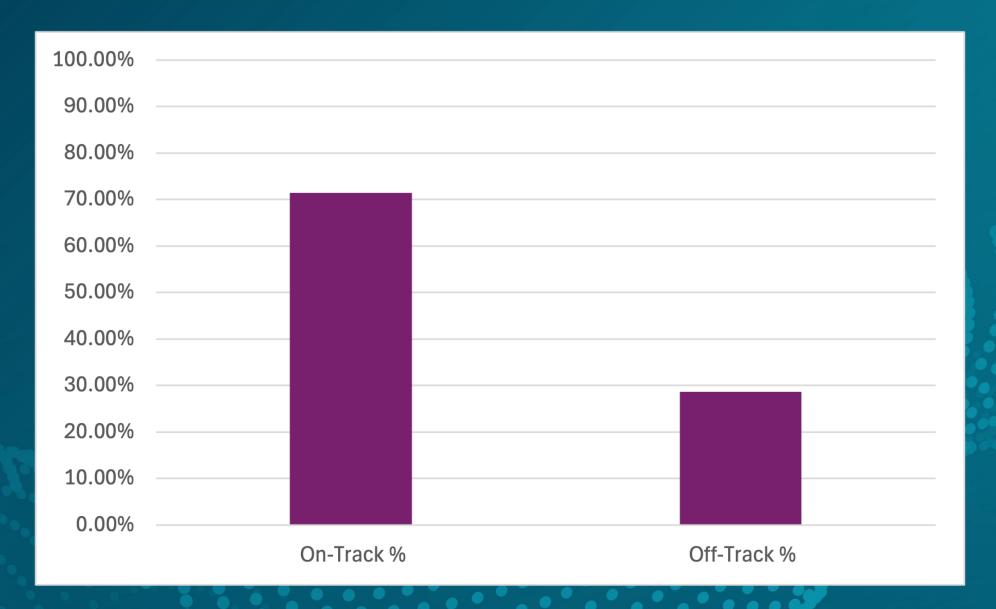
The MRI was read independently by trained research team members to determine the **glenoid** track (GT), Hill-Sachs Interval (HSI) and distance-to-dislocation (DTD). Any discrepant reading was evaluated by an orthopedic surgeon to determine a final score.

Descriptive statistics were employed to summarize patient and clinical characteristics. Analyses were performed in R (R Core Team, http://www.r-project.org).

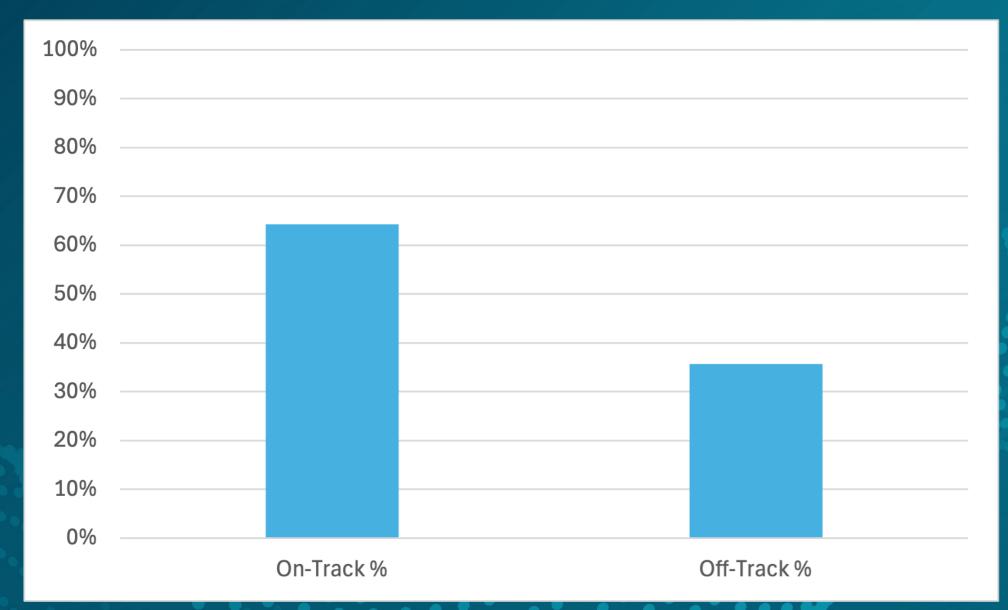
Results

42 patients who met inclusion criteria were included in the data analysis.

The study cohort was stratified by sex and statistics were generated.

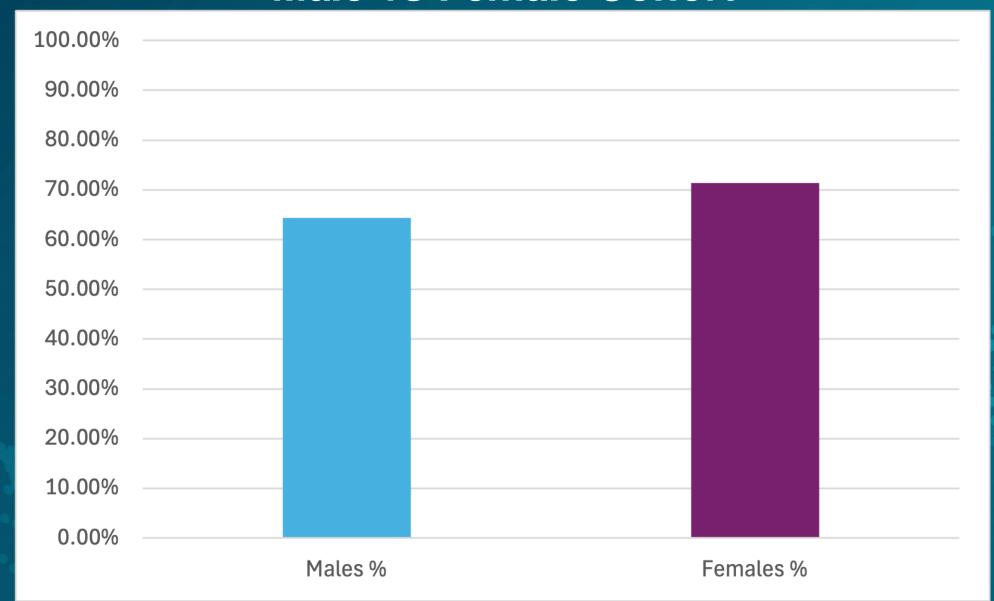

Comparison of Clinical and Demographic Information between Male and Female Cohort

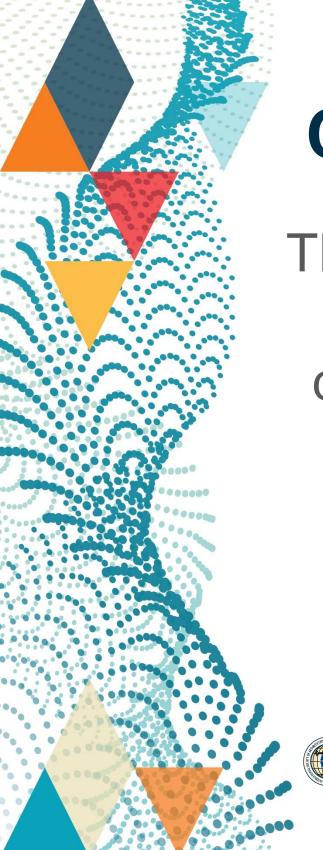
	<u>FEMALE</u>	MALE
<u>Number</u>	14 (33.4%)	28(66.6%)
Avg age	22.72 (+/- 11.46)	22.05(±11.47
Avg BMI	28.01kg/m ² (±6.36)	27.95kg/m ² (±6.48)
Dominant: Nondominant: Missing	6(42.8%):4(28.6%): 4(28.6%)	8(28.6%):12(42.8%):8(28.6%)
Sport Injury	7(50%)	18(64.3%)
Activity of Daily Living Injury	7(50%)	10(35.7%)
Recurrent instability	9(64%)	14(50%)
<u>Hyperlaxity</u>	2(14%)	6(21.4%)
Subluxation	4(28.65)	3(10.7%)
<u>Dislocation</u>	10(71.4%)	23(82.2%)
On track	10(71.4%)	18(64.3%)
Off track	4(28.6%)	10(35.7%)



Percentage (%) of On- vs Off-Track Hill-Sach Lesion in Female Cohort

Percentage (%) of On- vs Off-Track Hill-Sach Lesion in Male Cohort




There was no significant difference between males and females when comparing on-track and off-track HSL (p=0.7384)

Percentage (%) of On-Track Hill-Sachs Lesion in Male vs Female Cohort

Conclusion

This study's cohort of patients was predominantly male (66.6%), with a mean age at the time of dislocation of approximately 22 years. Females had a higher percentage of on-track lesions however, this difference was not significant compared to males.

References

Mazzocca, J; McGovern, M; Sercan, Y; Lowenstein, N; Matzkin, E; Medina, G. How to measure Glenoid Track and Hill-Sachs Interval and Distance to Dislocation. *Video Journal of Sports Medicine*. (in press).

Itoi E, Yamamoto N, Di Giacomo G, Marcello G. Glenoid track revisited. *J Shoulder Elbow Surg.* 2024;33(12):2791-2799. doi:10.1016/j.jse.2024.03.044.

Gyftopoulos S, Beltran LS, Bookman J, Rokito A. MRI Evaluation of Bipolar Bone Loss Using the On-Track Off-Track Method: A Feasibility Study. *AJR Am J Roentgenol*. 2015;205(4):848-852. doi:10.2214/AJR.14.14266.

Yamamoto N, Itoi E, Abe H, et al. Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension: a new concept of glenoid track. *J Shoulder Elbow Surg*. 2007;16(5):649-656. doi:10.1016/j.jse.2006.12.012.

Omori Y, Yamamoto N, Koishi H, et al. Measurement of the Glenoid Track In Vivo as Investigated by 3-Dimensional Motion Analysis Using Open MRI. *Am J Sports Med.* 2014;42(6):1290-1295. doi:10.1177/0363546514527406.

Barrow AE, Charles SJ, Issa M, et al. Distance to Dislocation and Recurrent Shoulder Dislocation After Arthroscopic Bankart Repair: Rethinking the Glenoid Track Concept. *Am J Sports Med*. 2022;50(14):3875-3880. doi:10.1177/03635465221128913.

Di Giacomo G, Itoi E, Burkhart SS. Evolving concept of bipolar bone loss and the Hill-Sachs lesion: from "engaging/non-engaging" lesion to "on-track/off-track" lesion. *Arthroscopy*. 2014;30(1):90-98. doi:10.1016/j.arthro.2013.10.004.

R: The R Project for Statistical Computing. www.r-project.org. http://www.r-project.org.

Bates D, Maechler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using Ime4X. *Journal of Statistical Software*. 2015;67(1):1-48.

Lüdecke D. ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. *JOSS*. 2018;3(26):772. doi:10.21105/joss.00772

