Late Adolescent Athletes Suffer More Musculoskeletal Injuries in Contact Sports Compared to Other Young Adults: A 10-Year NEISS Analysis

Brianna Fee, Rachit Saggar, Andrew Qi, Eva Heidinger, Cortez Brown, and MaCalus Hogan

University of Pittsburgh Department of Orthopedic Surgery

INTRODUCTION

➤ **Objectives:** analyze epidemiological patterns of musculoskeletal injuries among young athletes in contact sports

> Relation to sports medicine:

➤ Which demographics experience disparities and require targeted injury-prevention interventions?

Hypothesis: Disparities exist in the rates, types, distribution, and severity of injuries among young athletes in contact sports.

METHODS

- ➤ Data collection: National Electronic Injury
 Surveillance System (NEISS) from 2014 to 2023
- Injuries included: musculoskeletal (dislocations, sprains/strains, & fractures)
- Age Demographic: late adolescents & young adults
- Sports included: basketball, soccer, rugby, and ice hockey
- Ethical Considerations: This was an IRB exempt study

Data analyses: SPSS Statistics v.28

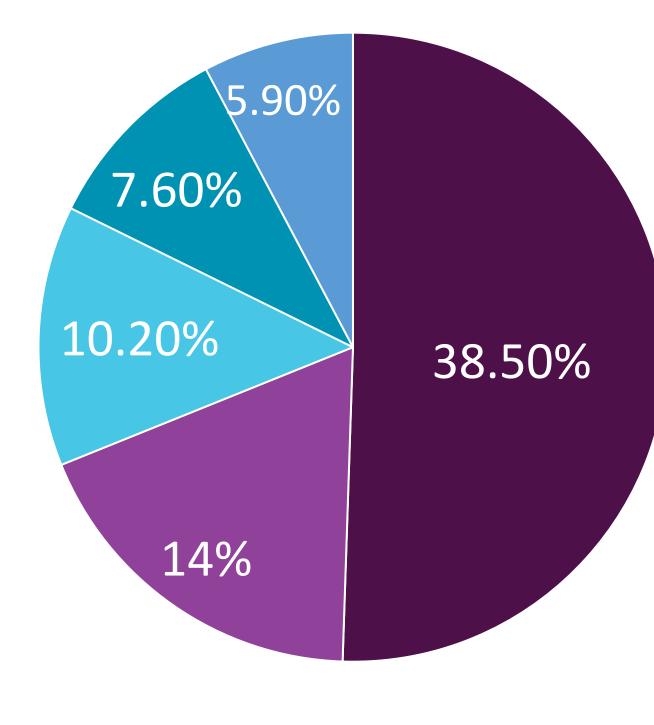
- Weighted national estimates (WNE)
 derived from NEISS
- Chi-squared tests

 check for relationships between categorical variables
- Univariate logistic regression
 hospitalization odds ratios (ORs) and risk factors

RESULTS

Groups with Highest Odds of Hospitalization Odds Ratio (OR) 95% Confidence Interval 56.245 [53.126 - 59.547] Fractures [18.858 - 21.738] 20.247 Dislocations Upper Leg Injuries 19.44 [18.02 - 20.96] 7.27 [6.32 - 8.35] Neck Injuries 4.01 [3.83 - 4.19] Lower Leg Injuries

Table 1: Adjusted Odds Ratios (ORs) and 95% Confidence Intervals (CIs) for hospitalization risk among demographics stratified within the study. Estimated using univariate logistic regression.


1.777

0.844

Most Common Body Part Injuries

Rugby Injuries

Ages 21-25

Figure 1: Displays the most common body parts injured during the 10-year period.

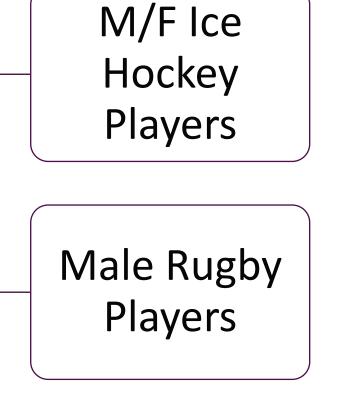
Frequencies by Sport

Basketball – 71.5% Soccer 25.1% Rugby – 1.8% Ice Hockey – 1.7%

Frequencies by Diagnosis

Sprains/Strains – 66.3%
Fractures - 24.9%
Dislocations – 8.8%

Demographic Frequencies		
Frequency		
1,252,353	81.70%	
280,629	18.30%	
1,532,982	100%	
	Frequency 1,252,353 280,629	


[1.64 - 1.925]

[0.801 - 0.890]

Age Group	Frequency	
15-18	967,642	63.10%
19-21	315,417	20.60%
22-25	249,923	16.30%
Total	1,532,982	100%

Table 2: Descriptive statistics stratified by sex and age group. Based on weighted national estimate (n=1,532,982).

Upper Extremity Injuries Most Common:

Lower Extremity Injuries Most Common:

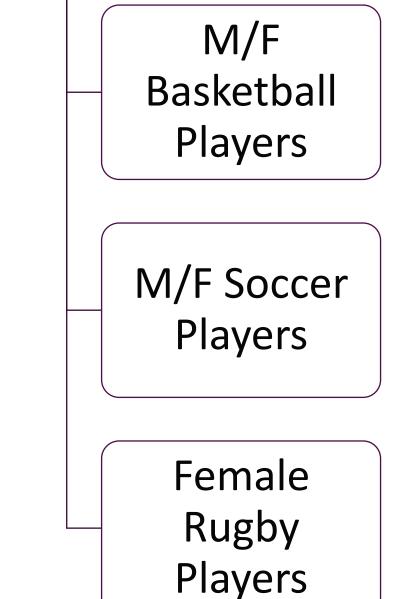


Figure 2: Graph presenting injury frequencies in relation to age. Values are based on weighted national estimate (n=1,532,982).

CONCLUSION

Main Takeaways:

- > Targeted prevention strategies needed for adolescents
 - Likely due to puberty, variations in musculoskeletal development, or a decreased risk perception
 - Requires improved accommodation for varying body types & physiologies
- > High ORs for rugby and upper extremity injuries
 - Education on injury prevention and risk factors
- ➤ Highlights sport-specific body regions that require special attention for preventative measures

Clinical Significance

Our findings offer valuable insight for developing appropriate interventions to enhance athlete safety in contact sports.

Faculty Disclosure

Affiliations

This study was conducted in conjunction with the following:

- University of Pittsburgh
 Medical Center (UPMC)
 Department of Orthopedic
 Surgery Foot/Ankle Division
- Bethel Musculoskeletal
 Research Center

Conflicts of Interest

There are no financial relationships or conflicts of interest to disclose.

References

- 1. Sheu Y, Chen LH, Hedegaard H. Sports- and Recreation-related Injury Episodes in the United States, 2011-2014. Natl Health Stat Report. 2016;(99):1-12.
- 2. Maffulli N, Longo UG, Gougoulias N, Caine D, Denaro V. Sport injuries: a review of outcomes. Br Med Bull. 2011;97:47-80. doi: 10.1093/bmb/ldq026. Epub 2010 Aug 14. PMID: 20710023.
- 3. Bennell K, Hunter DJ, Vicenzino B. Long-term effects of sport: preventing and managing OA in the athlete. Nat Rev Rheumatol. 2012 Dec;8(12):747-52. doi: 10.1038/nrrheum.2012.119. Epub 2012 Jul 31. PMID: 22847471.
- 4. Russell K, Selci E, Black B, Ellis MJ. Health-related quality of life following adolescent sports-related concussion or fracture: a prospective cohort study. J Neurosurg Pediatr. 2019 Apr 1;23(4):455-464. doi: 10.3171/2018.8.PEDS18356. Epub 2019 Jan 15. PMID: 30660131.
- 5. Huber BR, Alosco ML, Stein TD, McKee AC. Potential Long-Term Consequences of Concussive and Subconcussive Injury. Phys Med Rehabil Clin N Am. 2016 May;27(2):503-11. doi: 10.1016/j.pmr.2015.12.007. Epub 2016 Feb 2. PMID: 27154859; PMCID: PMC4866819.
- 6. Memmini AK, Mosesso KM, Perkins SM, et al. Premorbid Risk Factors and Acute Injury Characteristics of Sport-Related Concussion Across the National Collegiate Athletic Association: Findings from the Concussion Assessment, Research, and Education (CARE) Consortium. Sports Med. 2023;53(7):1457-1470
- 7. Lin, C. Y., Casey, E., Herman, D. C., Katz, N., & Tenforde, A. S. (2018). Sex Differences in Common Sports Injuries. PM&R, 10(10), 1073–1082. https://doi.org/10.1016/j.pmrj.2018.03.008
- 8. Hardaker NJ, Hume PA, Sims ST. Differences in Injury Profiles Between Female and Male Athletes Across the Participant Classification Framework: A Systematic Review and Meta-analysis. Sports Med. Published online March 27, 2024. doi:10.1007/s40279-024-02010-7
- 9. Stracciolini A, Casciano R, Levey Friedman H, Stein CJ, Meehan WP 3rd, Micheli LJ. Pediatric sports injuries: a comparison of males versus females. Am J Sports Med. 2014;42(4):965-972. doi:10.1177/0363546514522393
- 10. Edouard P, Feddermann-Demont N, Alonso JM, Branco P, Junge A. Sex differences in injury during top-level international athletics championships: surveillance data from 14 championships between 2007 and 2014. Br J Sports Med. 2015;49(7):472-477. doi:10.1136/bjsports-2014-094316
- 11. Devana, S.K., Solorzano, C., Nwachukwu, B. et al. Disparities in ACL Reconstruction: the Influence of Gender and Race on Incidence, Treatment, and Outcomes. Curr Rev Musculoskeletal Med 15, 1–9 (2022). https://doi.org/10.1007/s12178-021-09736-1
- 12. Patel NM, Edison BR, Carter CW, Pandya NK. The Impact of Race, Insurance, and Socioeconomic Factors on Pediatric Knee Injuries. Clin Sports Med. 2022;41(4):789-798. doi:10.1016/j.csm.2022.05.012
- 13. Bureau, U. C. (2021, December 3). Age and Sex Tables. Census.gov.
- 14. Kerr, Zachary Y et al. "Epidemiologic comparisons of soccer-related injuries presenting to emergency departments and reported within high school and collegiate settings." Injury Epidemiology vol. 4,1 (2017): 19. doi:10.1186/s40621-017-0116-9
- 15. Eamonn Delahunt, Alexandria Remus; Risk Factors for Lateral Ankle Sprains and Chronic Ankle Instability. J Athl Train 1 June 2019; 54 (6): 611–616. doi: https://doi.org/10.4085/1062-6050-44-18
- 16. Beynnon BD, Murphy DF, Alosa DM. Predictive Factors for Lateral Ankle Sprains: A Literature Review. J Athl Train. 2002 Dec;37(4):376-380. PMID: 12937558; PMCID: PMC164368.
- 17. Patel DR, Yamasaki A, Brown K. Epidemiology of sports-related musculoskeletal injuries in young athletes in the United States. Transl Pediatr. 2017 July;6(3):160-166. doi: 10.21037/tp.2017.04.08. PMID: 28795006; PMCID: PMC5532190.
- 18. Al-Qahtani, Mohammed A. et al. "Sports-Related Injuries in Adolescent Athletes: A Systematic Review." Cureus vol. 15,11 e49392. 25 Nov. 2023, doi:10.7759/cureus.49392
- 19. Stanley LE, Kerr ZY, Dompier TP, Padua DA. Sex Differences in the Incidence of Anterior Cruciate Ligament, Medial Collateral Ligament, and Meniscal Injuries in Collegiate and High School Sports: 2009-2010 Through 2013-2014. Am J Sports Med. 2016

