Lateral Extra-articular Tenodesis Increasingly Protects ACL Graft at Higher Posterior Tibial Slopes in a Laxity-Calibrated Knee Model

Kyle Borque, Nicholas Dunbar, Hongjia He, Robert Frangie, Mitzi Laughlin, Walter Lowe

Disclosures

Kyle Borque

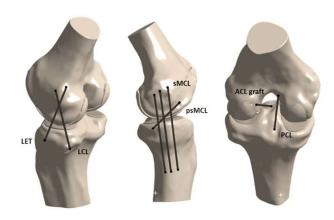
Paid Consultant for Xiros
 Support received from Xiros

Walter Lowe

Arthrex, Inc: Paid consultant; Paid presenter or speaker
 DJ Orthopaedics: Paid consultant

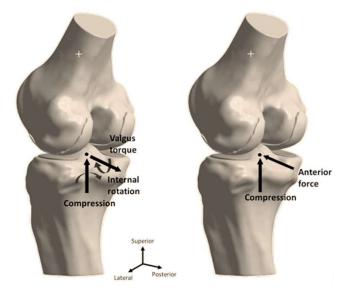
Background and Purpose

- The addition of a lateral extra-articular tenodesis (LET) at the time of anterior cruciate ligament reconstruction (ACLR) reduces ACL graft forces.
- LET has been shown to lower the risk of ACL graft rupture in patients who are at high risk due to
 - young age, elevated tibial slope, high grade laxity, participation in pivoting sports
- However, it is unknown whether the effectiveness of LET in patients with increasing posterior tibial slope (PTS) may plateau or drop-off at a threshold slope value.


The purpose of this study was to evaluate how increasing posterior tibial slope alters the protective effect of a LET on ACL graft force during pivot shift and anterior drawer tests.

- 18 finite element knee models derived from cadaveric specimen
 - Intact ACL
 - ACL reconstruction
 - ACL reconstruction with LET
 - All conditions modeled at 6 levels of PTS from 0° to 20°

- CT scans, motion envelope, soft-tissue attachments collected to personalize models
- Rotational knee laxity equalized across models (< 3 deg)
- Ligament and graft materials modeled as nonlinear springs



- Simulated modified Lemaire LET surgery
 - LET attached 5 mm posterior and proximal to LCL origin and to Gerdy's tubercle
 - Knee flexed to 30 degrees
 - ACLR was tensioned to 20 N, then LET was tensioned to 20 N

PTS	ACLR pretension	LET pretension
0	12.7	20.5
4	14.3	20.3
8	11.7	20.2
12	13.3	19.8
16	9.0	19,8
20	12.9	19.9

Pivot shift

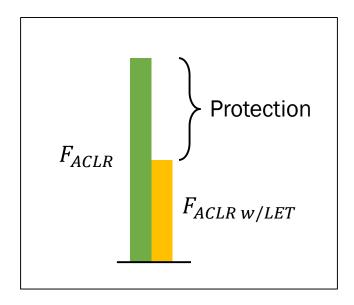
Simulated by applying 5 N·m valgus and 3
 N·m internal rotation moments to the proximal tibia at 30° flexion.

Modified anterior drawer

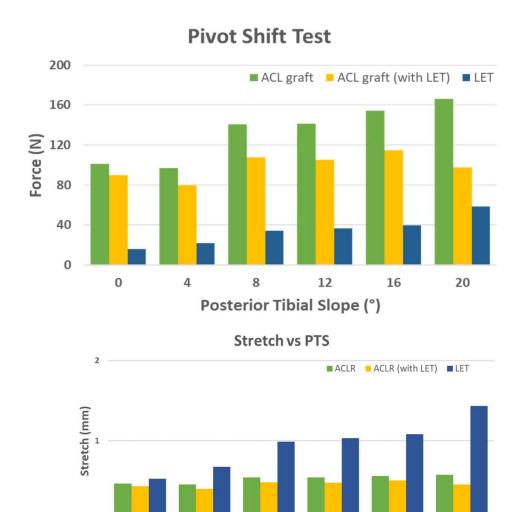
 Simulated by 710 N compressive force and an anterior force on the tibia, loading the ACL graft to 75% of its tensile failure limit

Force measurement

- ACL, ACLR, and ACLR with LET forces at each tibial slope condition
- Medial and lateral contact forces


Statistics

Wilcoxon signed-rank test (p<0.05)


- Graft protection
 - Change in graft force after LET relative to graft force without LET

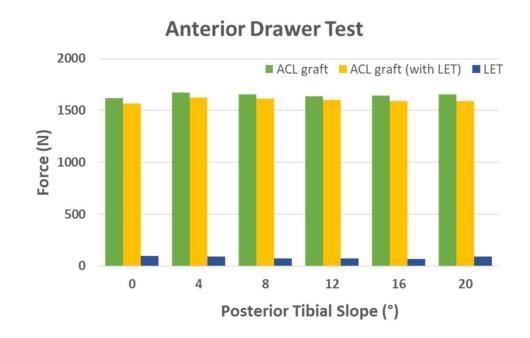
Protection (%) =
$$\frac{F_{ACLR \, w/LET} - F_{ACLR}}{F_{ACLR}} \times 100$$

- Pivot shift
 - LET decreased forces on ACL graft at all slopes
 - Protective effect of LET increased with more PTS
 - LET force increased from 18.0% to 60.4% of ACLR graft force
 - LET stretch increased with
 PTS while ACL graft did not

8

Posterior Tibial Slope (°)

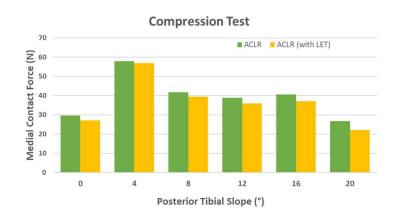
12

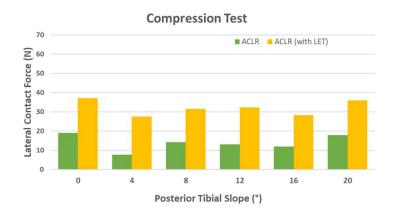

16

20

Anterior drawer

- LET marginally decreased forces on ACL graft at all slopes
- Protective effect of LET not affected by PTS
- LET force was 5.2% of ACLR graft force


The average protective effect of LET was greater during simulated pivoting.


ACL Graft Protection (%)

PTS	Pivot shift	Anterior drawer
0	11.2	3.5
4	17.9	2.8
8	23.4	2.5
12	25.4	2.3
16	25.6	3.1
20	41.3	3.8
Average	24.1 ± 10	3.0 ± 0.6

- Average lateral contact force across all PTS were increased by 18.1 N after LET (p < 0.03); no difference in medial contact force
 - 20 N applied compression
 - ACLR and LET tensioned to 20 N
 - Ligament pretension

Conclusion

- Indications for when LET should be added are still being examined.
- One cadaveric investigation reported low effectiveness of LET
 - Pearce et al. reported 8.3% protection independent of PTS
- Clinical investigations report high effectiveness of LET in setting of increased PTS
 - Firth et al. reported risk reduction between 50% and 67% for graft failure
- Findings from current study mirror the results from clinical study!
 - Protective effect varies between 11% and 41% depending on PTS
 - Primary mechanism may be additional LET stretch at increasing PTS
 - Laxity-controlled investigations may be important when determining benefit

References

- Borque KA, Jones M, Laughlin MS, et al. Effect of lateral extra-articular tenodesis on the rate of revision anterior cruciate ligament reconstruction in elite athletes. Am J Sports Med. 2022;50(13):3487-3492.
- Getgood AMJ, Bryant DM, Litchfield R, et al. Lateral extra-articular tenodesis reduces failure of hamstring tendon autograft anterior cruciate ligament reconstruction: 2-year outcomes from the STABILITY Study randomized clinical trial. Am J Sports Med. 2020;48(2):285-297.
- Grassi A, Signorelli C, Urrizola F, et al. Patients with failed anterior cruciate ligament reconstruction have an increased posterior lateral tibial plateau slope: A case-controlled study. *Arthrosc.* 2019;35(4):1172-1182.
- Firth AD, Bryant DM, Litchfield R, et al. Predictors of graft failure in young active patients undergoing hamstring autograft anterior cruciate ligament reconstruction with or without a lateral extra-articular tenodesis: The STABILITY experience. *Am J Sports Med*. 2022;50(2):384-395.