Minimum Two-Year Outcomes of Iliopsoas Tunnel Deepening with Primary Hip Arthroscopy: A Propensity Matched Comparison

Andrew R. Schab BS, Benjamin D Kuhns MD, Elizabeth G. Walsh BS, Roger Quesada-Jimenez MD, Ady Kahana-Rojkind MD, Benjamin G. Domb MD

Andrew R. Schab BS.

Clinical Research Assistant, American Hip Institute

Disclosures

I (and/or my co-authors) have something to disclose.

Detailed disclosure information is available via:

AAOS Orthopaedic Disclosure Program on the AAOS website at http://www.aaos.org/disclosure

Background: Iliopsoas Impingement Management

 "Painful internal hip snapping" reported in up to 21% of athletes with hip pain

Etiology – believed to be mechanical in nature

 Surgical management has evolve, yet remains a controversial topic Editorial Commentary: Iliopsoas Fractional Lengthening: Treating a Disease or a Symptom?

Brian Barlow, M.D., Editorial Board

How has arthroscopic management of the iliopsoas evolved, and why? A survey of high-volume arthroscopic hip surgeons

Austin W. Chen¹, Matthew J. Steffes², Joseph R. Laseter³, David R. Maldonado⁴, Victor Ortiz-Declet⁵, Itay Perets⁶ and Benjamin G. Domb ⁶, ^{4,7}*

Editorial Commentary: Indiscriminate Iliopsoas
Tenotomy May Cause Complications—With Tight
Indications and Transbursal Lengthening, We May
Avoid Them

Benjamin G. Domb, M.D., Editorial Board, and David R. Maldonado, M.D., Editorial Board

Purpose

- To report minimum two-year outcomes of iliopsoas tunnel deepening (ITD) during hip arthroscopy
- Compare their results to a propensity-matched cohort undergoing iliopsoas fractional lengthening (IFL) during hip arthroscopy
- Null Hypothesis: ITD and IFL will yield similar improvements in iliopsoas impingement symptoms when utilized during primary hip arthroscopy

Methods: Patient Selection

- Primary hip arthroscopy
 - Treating Iliopsoas impingement + FAI + Labral tears
- Minimum 2-year follow-up
- No ipsilateral conditions
- Excluded Tonnis > 1
- Excluded dysplastic hips (LCEA <18°)

Figure 1. Circumduction maneuver to elicit internal snapping. The hip is brought into deep flexion followed by abduction and external rotation and then returned to extension.

Methods: Patient Selection

- Matching Criteria (1:1 Ratio)
 - ○Age
 - ○Sex
 - OBMI
 - Acetabular Outerbridge Score
 - **OLabral Treatment**
 - Capsular Treatment

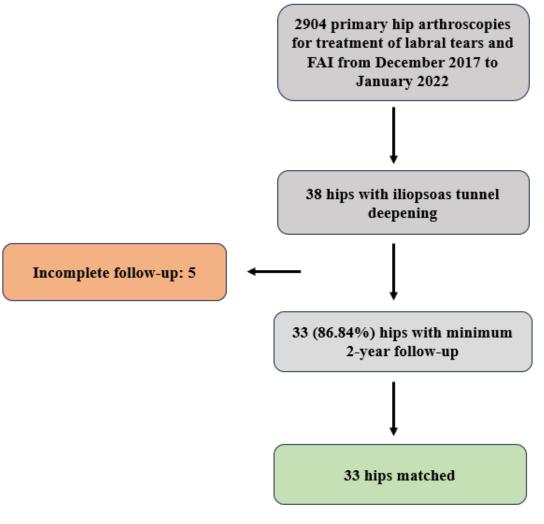


Figure 2. Exclusion criteria

Results: Demographics

Table 1. Demographic Information for ITD and IFL Groups

	ITD	IFL	P Value
T-4-1 T1:-:1-1-*	22	440	TAT A
Total Eligible*	33	440	NA
Total Matched*	33	33	NA
Follow-up time, mo†	27.9 ± 9.6	56.3 ± 23.9	< 0.01
Age at surgery, yr†	31.4 ± 12.5	33.0 ± 13.0	0.64
BMI $(kg/m^2)^{\dagger}$	24.3 ± 3.9	23.7 ± 5.2	0.28
Female [‡]	30 (90.1%)	29 (87.9%)	>0.99

^{*}The values are given as the number of cases.

The values are given as the mean and standard deviation.

[‡]The values are given as numbers (percent)

Results: Radiographic Findings

Table 2. Preoperative Radiographic Findings

	ITD	IFL	P Value
Tonnis Grade*			
0	27 (81.8%)	27 (81.8%)	>0.99
Lateral Center-Edge	29.5 ± 6.4	29.7 ± 6.2	>0.99
Angle (deg) †			
ACEA (deg) †	29.4 ± 8.5	29.2 ± 6.1	0.73
Alpha Angle (deg)†	56.7 ± 9.5	59.0 ± 12.7	0.57

^{*}The values are given as number (percent)

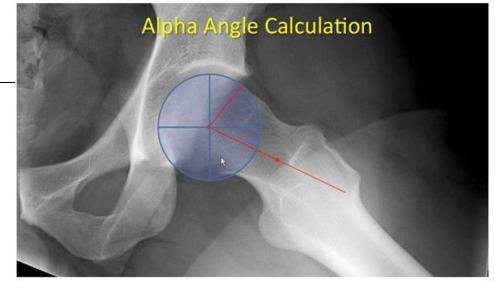


Figure 1 – Alpha angle calculation – Formed by a line drawn from the center of the femoral head through the center of the femoral neck, and a line from the center of the femoral head to the femoral head/neck junction at the point at which the femoral neck diverges from a circle drawn around the femoral head

The values are given as the mean and standard deviation

Results: Patient-Reported Outcomes

- Significant improvement in both groups
- Similar Preoperative PROs
- Similar Postoperative PROs

Table 5. Patient-I	Reported Outcomes
--------------------	-------------------

	ITD	IFL	P Value
mHHS			
Preoperative $(n = 33, n = 33)$	57.1 ± 16.8	65.0 ± 13.4	0.11
Postoperative ($n = 29$, $n = 32$)	83.4 ± 17.2	86.4 ± 15.0	0.47
Preop vs Postop P value	< 0.01	< 0.01	
Δ (n = 29, n = 32)	26.7 ± 18.1	20.7 ± 16.6	0.26
NAHS			
Preoperative ($n = 33$, $n = 33$)	59.2 ± 15.8	61.2 ± 11.7	0.63
Postoperative ($n = 29$, $n = 32$)	85.4 ± 17.1	85.0 ± 17.3	0.92
Preop vs Postop P value	< 0.01	< 0.01	
Δ (n = 29, n = 32)	26.5 ± 18.0	24.1 ± 18.7	0.48
HOS-SSS			
Preoperative ($n = 29$, $n = 31$)	35.8 ± 21.0	41.2 ± 19.1	0.54
Postoperative ($n = 25$, $n = 31$)	74.1 ± 27.6	74.5 ± 26.0	0.96
Preop vs Postop P value	< 0.01	< 0.01	
Δ (n = 25, n = 31)	37.7 ± 24.7	35.9 ± 27.1	0.92
iHOT-12			
Preoperative $(n = 33, n = 33)$	31.2 ± 17.9	34.0 ± 18.4	0.71
Postoperative ($n = 29$, $n = 32$)	72.7 ± 27.1	74.9 ± 26.9	0.75
Preop vs Postop P value	< 0.01	< 0.01	
Δ (n = 29, n = 32)	41.8 ± 27.0	42.0 ± 26.0	0.99
VAS			
Preoperative ($n = 33$, $n = 33$)	5.8 ± 2.5	5.3 ± 1.9	0.40
Postoperative $(n = 30, n = 32)$	2.2 ± 2.6	1.9 ± 1.9	0.53
Preop vs Postop P value	< 0.01	< 0.01	
Δ (n = 30, n = 32)	-3.8 ± 2.9	-3.51 ± 2.4	0.65
Satisfaction $(n = 30, n = 32)$	7.8 ± 2.5	8.1 ± 2.2	0.59

^{*}The values are given as number (percent)

Results: Clinically Meaningful Thresholds

Met MCID and PASS at similar rates

Table 6. MCID and PASS

	ITD	IFL	P Value
MCID			
mHHS (8.28/6.61)	26 (78.8%)	25 (75.6%)	>0.99
NAHS (7.79/5.77)	25 (75.8%)	27 (81.8%)	0.55
HOS-SSS	20 (60.6%)	24 (72.7%)	0.30
(10.30/9.37)			
iHOT-12	26 (78.8%)	29 (87.9%)	0.32
(8.81/9.06)			
PASS			
mHHS (83.3)	18 (54.6%)	21 (63.6%)	0.45
NAHS (85.6)	20 (60.6%)	20 (60.6%)	>0.99
HOS-SSS (74)	16 (48.5%)	16 (48.5%)	>0.99
iHOT-12 (72.2)	19 (57.6%)	20 (60.6%)	0.80

Results: Alleviation of Painful Snapping

- Similar rates of improvement in snapping symptoms
- ~80% alleviation of painful snapping at 6 to 12 month postop visit

	A 1011 1 1 1 1 1	CTN 1 C 1	T . 1	ATM 9
Lable /	Alleviation	of Painful	Internal	Snapping

	ITD	IFL	P Value
Trouble from Grinding,			
Catching, Clicking			
Preoperative $(n = 33, n = 33)\dagger$	41.7 ± 29.0	41.2 ± 31.1	0.84
Postoperative (n = 30, n = 32) \dagger	70.8 ± 32.3	81.2 ± 23.7	0.29
Preop vs Postop P value	< 0.01	< 0.01	
Δ (n = 30, n = 32)†	29.3 ± 34.6	41.1 ± 33.3	0.20
Resolution of Painful Internal	26 (78.8%)	27 (81.8%)	0.76
Snapping During Postop			
Exam*			

Conclusion

- Both ITD and IFL improved mechanical symptoms and painful internal snapping when treating iliopsoas impingement during hip arthroscopy.
- ITDs had comparable improvements in PROs and clinical outcomes when compared to IFLs.
- ITD and IFL appear to be efficacious procedures when managing iliopsoas impingement.

References

- Barlow B. Editorial Commentary: Iliopsoas Fractional Lengthening: Treating a Disease or a Symptom? Arthroscopy. 2019 May;35(5):1441-1444. doi: 10.1016/j.arthro.2019.02.013. PMID: 31054723.
- Chen AW, Steffes MJ, Laseter JR, Maldonado DR, Ortiz-Declet V, Perets I, Domb BG. How has arthroscopic management of the iliopsoas evolved, and why? A survey of high-volume arthroscopic hip surgeons. J Hip Preserv Surg. 2020 Aug 2;7(2):322-328. doi: 10.1093/jhps/hnaa023. PMID: 33163218; PMCID: PMC7605777.
- Domb BG, Maldonado DR. Editorial Commentary: Indiscriminate Iliopsoas Tenotomy May Cause Complications-With Tight Indications and Transbursal Lengthening, We May Avoid Them. Arthroscopy. 2021 Jul;37(7):2149-2151. doi: 10.1016/j.arthro.2021.04.065. PMID: 34226005.