# Posterior Pelvic Tilt Increases Hip Range of Motion and Hip Joint Stress: A Systematic Review

Benjamin D. Kuhns, Ady H. Kahan-Rojkind, Ali Parsa, Tyler R. McCarroll, Drashti Sikligar, Benjamin G. Domb







### **Disclosures**

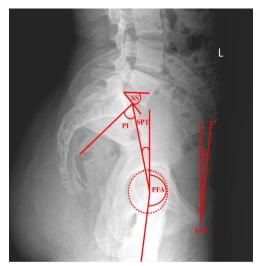
I (and/or my co-authors) have something to disclose.

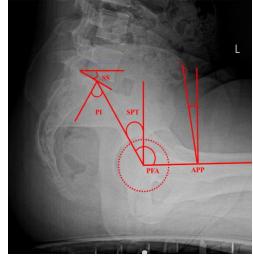
Detailed disclosure information is available via:

AAOS Orthopaedic Disclosure Program on the AAOS website at http://www.aaos.org/disclosure



## Introduction


 Sagittal pelvic kinematics are a complicated topic secondary to the numerous and heterogeneously defined radiographic variables and clinical conditions involved.


 Observed hip motion is a composite of femoroacetabular and spinopelvic motion



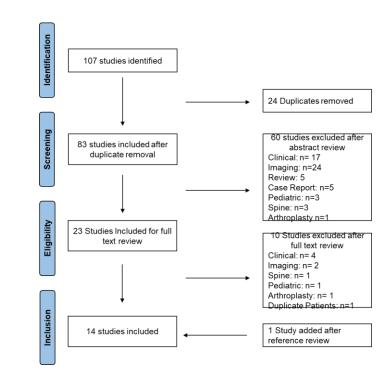
### Introduction

- Sagittal spinopelvic parameters include
  - sacral slope (SS)
  - anterior pelvic plane angle (APP)
  - spinopelvic tilt (SPT)
  - pelvic incidence (PI)
  - pelvic-femoral angle (PFA)
  - o lumbar lordosis.








# **Purpose:**

- To perform a systematic review of studies evaluating the effect of pelvic tilt on hip joint contact forces and range of motion in patients with femoroacetabular impingement (FAI) and acetabular dysplasia.
  - We hypothesized that sagittal pelvic motion would be limited in patients with FAI while increased in patients with dysplasia



### **Methods**

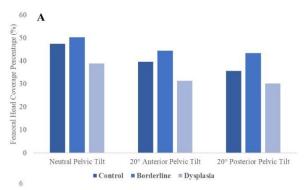
- Inclusion Criteria: Studies evaluating pelvic tilt on preoperativeh ip joint contact forces, biomecahncis, or range of motion in subjects with FAI or dysplasia.
- Exclusion criteria: Studies focusing on arthroplasty, radiographic imaging, or clinical outcomes
- Studies graded for quality according to Methodological Index for Non-Randomized Studies (MINORs) and Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I)

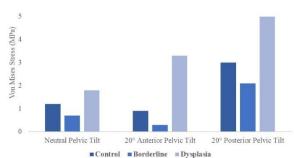




# **Results: Study Design and Quality Assessment**

#### 14 Studies included


- Two studies involving hip joint biomechanics in acetabular dysplasia, 12 studies evaluating FAI
- 4 studies evaluating biomechanical modeling and joint forces
- 4 studies evaluating simulated hip and pelvic range of motion on 3D-CT creconstruction
- 5 studies using in-vivo measurements of hip motion relative to pelvic tilt


|              |      |                                   |         |                           |                                                                                                                                                                                                              | Advanced Imaging                                |                                                    |                                                                                 | MINORS | ROBINS |
|--------------|------|-----------------------------------|---------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|--------|--------|
| Author       | Year | Journal                           | Country | Study Design              | Pelvic tilt reference and position                                                                                                                                                                           | Acquired                                        | Loading Condition                                  | Modeling Platform                                                               |        |        |
| minoff       | 2018 | OJSM                              | Sweden  | Motion Analysis           | Seated Pelvis: PALM palpation inclinometer                                                                                                                                                                   | None                                            | Seated                                             | None                                                                            | 19     | Low    |
| tkins        | 2020 | JOR                               | USA     | Motion Analysis           | Standing Pelvis: Neutral tilt referenced off<br>vertical axis **                                                                                                                                             | Dual Fluoroscopy,<br>CT Scan                    | Walking                                            | MATLAB: Mathworks                                                               | 22     | Low    |
| agwell       | 2016 | Clin.<br>Biomech.                 | USA     | Motion Analysis           | Standing Pelvis: Global Coordinate System**                                                                                                                                                                  | None                                            | Deep Squat                                         | Visual 3D (C-motion)                                                            | 23     | Low    |
| Bagwell      | 2019 | Clin.<br>Biomech.                 | USA     | Motion Analysis           | Standing Pelvis: Global Coordinate System**                                                                                                                                                                  | None                                            | Deep Squat, High Step                              | Visual 3D (C-motion)                                                            | 22     | Low    |
| Catelli      | 2018 | OJSM                              | Canada  | Motion Analysis           | Standing Pelvis: Global Coordinate System<br>with pelvic motion referenced off pelvic origin<br>midway between ASIS and PSIS                                                                                 | CT scan                                         | Squat                                              | Nexus 1.8.5; Vicon Motion<br>Systems                                            | 21     | Low    |
| ader         | 2018 | JBJS: Br                          | USA     | Motion Analysis           | Standing and Seated Pelvis: Sacral Slope                                                                                                                                                                     | Biplanar EOS<br>Standing/Sitting<br>Radiographs | Stand/Sit                                          | None                                                                            | 19     | Low    |
| lasegawa     | 2021 | BMC<br>Musculoskel<br>et. Disord. | Japan   | Biomechanical<br>Modeling | Supine Pelvis: Neutral Tilt at Anterior Pelvic<br>Plane                                                                                                                                                      | CT scan                                         | Standing                                           | CT-based templating (ZedHip);<br>Finite Element Analysis<br>(Mechanical Finder) | 19     | Low    |
| Citamura     | 2021 | CORR                              | Japan   | Biomechanical<br>Modeling | Supine Pelvis: Neutral Tilt at Anterior Pelvic<br>Plane                                                                                                                                                      | CT Scan                                         | Single Leg Stance                                  | Finite Element Analysis<br>(Mechanical Finder)                                  | 20     | Mod    |
| amontag<br>e | 2009 | CORR                              | Canada  | Motion Analysis           | Standing Pelvis: Neutral tilt referenced off<br>vertical axis **                                                                                                                                             | None                                            | Squat                                              | Vicon Workstation                                                               | 23     | Low    |
| ewis         | 2018 | JOSPT                             | USA     | Motion Analysis           | Standing Pelvis: Neutral tilt referenced off<br>vertical axis **                                                                                                                                             | None                                            | Single Leg Squat                                   | Visual 3D (C-motion)                                                            | 20     | Low    |
| lg           | 2018 | AJSM                              | Canada  | Motion Analysis           | Supine Pelvis: Vertical Line from center of the<br>bicoxofemoral head to center of the sacral<br>endplate. Pelvic Tilt Reference for motion<br>analysis based on standing vertical pelvis as<br>neutral tilt | CT Scan                                         | Walking, Squat                                     | Nexus 1.8.5; Vicon Motion<br>Systems                                            | 18     | Mod    |
| atel®        | 2020 | JAAOS                             | USA     | Motion Analysis           | Supine Pelvis: Global Coordinate system*                                                                                                                                                                     | CT Scan                                         | Supine hip high flexion,<br>supine hip mid-flexion | MATLAB: Mathworks                                                               | 19     | Mod    |
| ossa         | 2014 | AJSM                              | USA     | Motion Analysis           | Supine Pelvis: Angle between line connecting<br>the midpoint of the sacral plate to the femoral<br>head axis and vertical axis                                                                               | CT scan                                         | Supine hip flexion, internal rotation              | Dyonics Plan                                                                    | 22     | Low    |
| an<br>oucke  | 2020 | Clin.<br>Biomech.                 | Belgium | Motion Analysis           | Supine Pelvis: Neutral Tilt*                                                                                                                                                                                 | None                                            | Supine hip flexion                                 | MATLAB: Mathworks                                                               | 22     | Low    |



# Results: Hip Biomechanics in Dysplasia

- Increased anterior pelvic tilt in the standing position for dysplastic hips compared to a control population
  - May confer additional hip stability while standing
- Femoral head coverage was lower <u>and</u> Von Mises Stresses were significantly higher with more posterior pelvic tilt in dysplastic subjects
- Hip joint maximum contact pressure was significantly higher in the standing position with more posterior pelvic tilt in dysplastic subjects





Calculated femoral head coverage percentage (A) and Von Mises Stresses (B) in neutral, anterior, and posterior pelvic tilt reported by Hasegawa et al<sup>10</sup>.



# **Results: Effect of Pelvic Tilt on Hip Motion**

- In FAI three studies evaluating the impact of pelvic tilt on hip motion
- All 3 found increasing hip range of motion with posterior pelvic tilt
  - Decreasing hip motion with anterior pelvic tilt

|                       | Loading Condition                                                                             | Hip Motion°<br>Seated;<br>Neutral PT                              | Hip Motion <sup>o</sup> Lumbar<br>Extension;Anterior PT             | Hip Motion°<br>Lumbar<br>Flexion:<br>Posterior PT                   | Anterior Pelvic Tilt<br>10°                                      | Anterior<br>Pelvic Tilt 5°                                     | Neutral Pelvic Tilt                                         | Posterior<br>Pelvic Tilt<br>5°                                    | Posterior Pelvic Tilt<br>10°                                  |
|-----------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|
| Aminoff <sup>18</sup> | Seated; Clinical<br>Range of Motion                                                           | Control:<br>IR 37.5;<br>ER: 36.9;<br>FAI:<br>IR 30.3;<br>ER: 36.0 | Control:<br>IR: 25.9;<br>ER: 30.8;<br>FAI:<br>IR: 20.5;<br>ER: 29.5 | Control:<br>IR: 41.6;<br>ER: 36.8;<br>FAI:<br>IR: 34.3;<br>ER: 35.0 |                                                                  |                                                                |                                                             |                                                                   |                                                               |
| Patel <sup>25</sup>   | Supine; High Hip<br>Flexion: 100 Flexion;<br>Mid Hip Flexion: 35<br>Flexion                   |                                                                   |                                                                     |                                                                     | High Flexion IR: -<br>6.5±9.3*<br>Mid Flexion IR:<br>36.1±6.8    | High<br>Flexion IR:<br>0.2±9.3*<br>Mid Flexion<br>IR: 37.0±5.2 | High Flexion IR:<br>4.3±8.4<br>Mid Flexion IR:<br>37.2±5.3  | High<br>Flexion IR:<br>8.9±6.7*<br>Mid<br>Flexion IR:<br>37.9±4.4 | High Flexion IR:<br>12.9±5.8*<br>Mid Flexion IR:<br>38.5±3.0  |
| Ross <sup>26</sup>    | Supine: (IR at 90 hip<br>flexion; FADIR (90<br>Flexion; 15<br>adduction); Maximum<br>flexion) |                                                                   |                                                                     |                                                                     | IR: 26.1±13.5**;<br>FADIR: 15.5±12.7**;<br>Flexion: 109.3±10.9** |                                                                | IR: 32.0±12.6;<br>FADIR: 24.0±.12.9;<br>Flexion: 119.3±10.8 |                                                                   | IR: 37.1±12.4**;<br>FADIR: 31.4±13.8**<br>Flexion: 129.3±10.8 |



# **Results: Effect of Pelvic Tilt on Hip Motion**

- In FAI nine studies evaluated dynamic sagittal hip and pelvic motion during functional maneuvers
- During squat, FAI subjects had increased anterior pelvic tilt and lower total pelvic motion compared to controls
- FAI patients had more anterior pelvic tilt during weight bearing step down and high step but <u>not</u> with supine hip flexion

|            | Loading Condition      |                                                        | Walk                                                                     | Squat                                                       |                                                                                                              | High Step                                                                                          | Step Down                                                                                                         |                                                                                                       | Supine Hip<br>Flexion                                                 | Sit to Stand                                                             |                                                |                                               |
|------------|------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|
| Author     | Motion Variable        | Hip                                                    | Pelvic Motion                                                            | Hip Motion (*)                                              | Pelvic Motion (°)                                                                                            | Pelvic Motion (°)                                                                                  | Hip Motion (°)                                                                                                    | Pelvic Motion (*)                                                                                     | Active (°)                                                            | Passive (°)                                                              | Sitting (°)                                    | Standing (°)                                  |
| Atkins     | Walking                | •                                                      | Resting PT FAE 3.4; Control: 9.8*; Change in PT: FAE -1.0; Control: 4.4* | ,                                                           |                                                                                                              |                                                                                                    |                                                                                                                   | ,,                                                                                                    |                                                                       |                                                                          |                                                |                                               |
| Bagwell    | Deep Squat             |                                                        |                                                                          | Hip Flexion<br>FAI: 106.6±14;<br>Control: 113±6.7           | Anterior PT<br>FAI: 23.4±8.2;<br>Control: 12.5±17.1*                                                         |                                                                                                    |                                                                                                                   |                                                                                                       |                                                                       |                                                                          |                                                |                                               |
| Bagwell    | Deep Squat, High Step  |                                                        |                                                                          |                                                             | Posterior PT<br>FAI: 8.4±11.1<br>Control: 21.1±11.3<br>Pelvifemoral Ratio FAI:<br>0.26±0.1 Control: 0.49±0.1 | Posterior PT FAI: 15.9±3.7 Control:20.0±7.1 Pelvifemoral Ratio: FAI: 0.22±0.05; Control: 0.30±0.12 |                                                                                                                   |                                                                                                       |                                                                       |                                                                          |                                                |                                               |
| Catelli    | Squat                  |                                                        |                                                                          | Sagittal Hip ROM*<br>FAI: 88.6±23.5<br>Control: 103.8±10.6* | Pelvic ROM <sup>a</sup><br>FAE 7.2±4.1 Control:<br>12.7±6.6°                                                 |                                                                                                    |                                                                                                                   |                                                                                                       |                                                                       |                                                                          |                                                |                                               |
| Fader      | Sit to Stand           |                                                        |                                                                          |                                                             |                                                                                                              |                                                                                                    |                                                                                                                   |                                                                                                       |                                                                       |                                                                          | Sacral Slope:<br>FAI: 30±9;<br>Control:14±10** | Sacral Slope:<br>FAI: 42±9;<br>Control: 37±5* |
| Lamontagne | Squat                  |                                                        |                                                                          |                                                             | Sagittal Pelvic ROM<br>FAI: 14.7±8.4<br>Control: 24.2±6.8**                                                  |                                                                                                    |                                                                                                                   |                                                                                                       |                                                                       |                                                                          |                                                |                                               |
| Lewis      | Step Down <sup>b</sup> |                                                        |                                                                          |                                                             |                                                                                                              |                                                                                                    | Hip Flexion*:<br>FAI Female:40.2-8.9;<br>FAI Male: 30.2-5.9, Control<br>Female:32.1±9.4 Control Male:<br>29.2±9.9 | Anterior PT* FAI Female: 13.9±6.1; FAI Male: 6.1±4.4*; Control Female: 7.8±7.4 Control Male: 4.1±7.5* |                                                                       |                                                                          |                                                |                                               |
| Ng         | Walk, Squat            | Sagittal hip<br>ROM<br>FAI: 45±5;<br>Control:<br>51±4° | Sagittal Pelvic<br>ROM<br>FAI: 3±1;<br>Control: 3±1                      | Sagittal Hip ROM<br>FAI: 98±18;<br>Control: 109±11          | Sagittal Pelvic ROM<br>FAI: 11±4;<br>Control: 15±7                                                           |                                                                                                    |                                                                                                                   |                                                                                                       |                                                                       |                                                                          |                                                |                                               |
| Van Houcke | Supine Hip Flexion     |                                                        |                                                                          |                                                             |                                                                                                              |                                                                                                    |                                                                                                                   |                                                                                                       | Posterior PT<br>FAI: 12.5 (11.5-<br>13.6) Control: 9.1<br>(8.2-9.9)** | Posterior PT<br>FAI: 10.5 (8.9-<br>12.1)<br>Control: 10.0 (8.7-<br>11.4) |                                                |                                               |



### **Conclusions**

- Hip joint stress is increased with posterior pelvic tilt in dysplastic patients, while increasing posterior pelvic tilt increases hip range of motion to impingement in patients with FAI.
- During weightbearing exercises, the ability for FAI patients to posteriorly tilt the pelvis is restricted compared to a control population.

| Study      | Study findings relative to pelvic tilt and sagittal pelvic motion                                                                                                                                                                                                                |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aminoff    | Anterior tilt restricts hip flexion and internal rotation for both FAI and control patients                                                                                                                                                                                      |
| Atkins     | Male FAI patients have increased posterior pelvic tilt during gait. FAI patients have less pelvic motion during gait than control patients when compared to the standing position                                                                                                |
| Bagwell    | FAI patients have significantly decreased posterior pelvic tilt during maximum squat compared to control patients                                                                                                                                                                |
| Bagwell    | FAI patients with decreased posterior tilt and smaller pelvifemoral ratios with squat and high step compared to control patients                                                                                                                                                 |
| Catelli    | FAI patients have decreased posterior pelvic tilt during the descent phase of squat compared to control patients. FAI patients have decreased hip motion during descent phase of squat compared to control patients.                                                             |
| Fader      | FAI patients had less spine flexion and more hip flexion compared to controls when sitting. There was increased anterior pelvic tilt in FAI patients when sitting.                                                                                                               |
| Hasegawa   | Posterior pelvic tilt increases hip joint stress and decreases femoral head coverage in dysplastic and borderline dysplastic compared to control patients                                                                                                                        |
| Kitamura   | Dysplastic patients have increased dynamic changes in pelvic tilt from supine to standing, indicating that postural changes in pelvic tilt affect joint contact forces. A larger posterior tilt is associated with increased hip joint contact pressure from supine to standing. |
| Lamontagne | patients have significantly decreased overall pelvic sagittal range of motion compared to controls                                                                                                                                                                               |
| Lewis      | FAI patients have increased hip flexion and decreased posterior pelvic tilt during step down compared to control patients.                                                                                                                                                       |
| Ng         | FAI patients have restricted hip and pelvic ROM when squatting                                                                                                                                                                                                                   |
| Patel      | Posterior pelvic tilt significantly increases hip internal rotation in high flexion but not mid flexion in hips with FAI morphology in the supine position                                                                                                                       |
| Ross       | Posterior pelvic tilt significantly increases hip internal rotation in flexion and FADIR positions in hips with FAI morphology in the supine position                                                                                                                            |
| Van Houcke | FAI patients have increased posterior pelvic tilt during non-weight bearing in line active, but not passive hip flexion compared to control patients                                                                                                                             |



### References

- 1.Kitamura K, Fujii M, Ikemura S, Hamai S, Motomura G, Nakashima Y. Does Patient-specific Functional Pelvic Tilt Affect Joint Contact Pressure in Hip Dysplasia? A Finite-element Analysis Study. Clin Orthop Relat Res. 2021;479(8):1712-1724. doi:10.1097/corr.00000000001737
- 2.Fader RR, Tao MA, Gaudiani MA, et al. The role of lumbar lordosis and pelvic sagittal balance in femoroacetabular impingement. Bone Jt J. 2018;100-B(10):1275-1279. doi:10.1302/0301-620x.100b10.bjj-2018-0060.r1
- 3.Lamontagne M, Kennedy MJ, Beaulé PE. The effect of cam FAI on hip and pelvic motion during maximum squat. Clin Orthop Relat R. 2009;467(3):645--650. doi:10.1007/s11999-008-0620-x
- 4.Houcke JV, Pattyn C, Bossche LV, Redant C, Maes JW, Audenaert EA. The pelvifemoral rhythm in cam-type femoroacetabular impingement. Clin Biomech. 2014;29(1):63-67. doi:10.1016/j.clinbiomech.2013.10.019
- 5.Bagwell JJ, Snibbe J, Gerhardt M, Powers CM. Hip kinematics and kinetics in persons with and without cam femoroacetabular impingement during a deep squat task. Clin Biomech. 2016;31:87-92. doi:10.1016/j.clinbiomech.2015.09.016
- 6.Bagwell JJ, Powers CM. Persons with femoroacetabular impingement syndrome exhibit altered pelvifemoral coordination during weightbearing and non-weightbearing tasks. Clin Biomech. 2019;65:51-56. doi:10.1016/j.clinbiomech.2019.04.003
- 7.Aminoff AS, Agnvall C, Todd C, et al. The effect of pelvic tilt and cam on hip range of motion in young elite skiers and nonathletes. Open Access J Sports Med. 2018;9:147-156. doi:10.2147/oaism.s162675
- 8.Atkins PR, Fiorentino NM, Hartle JA, et al. In Vivo Pelvic and Hip Joint Kinematics in Patients With Cam Femoroacetabular Impingement Syndrome: A Dual Fluoroscopy Study. J Orthop Res. 2020;38(4):823-833. doi:10.1002/jor.24509
- 9.Catelli DS, Kowalski E, Beaulé PE, Smit K, Lamontagne M. Asymptomatic Participants With a Femoroacetabular Deformity Demonstrate Stronger Hip Extensors and Greater Pelvis Mobility During the Deep Squat Task. Orthop J Sports Med. 2018;6(7):2325967118782484. doi:10.1177/2325967118782484
- 10.Hasegawa K, Kabata T, Kajino Y, Inoue D, Sakamoto J, Tsuchiya H. The influence of pelvic tilt on stress distribution in the acetabulum: finite element analysis. BMC Musculoskelet Disord. 2021;22(1):764. doi:10.1186/s12891-021-04500-5
- 11.Lewis CL, Loverro KL, Khuu A. Kinematic Differences During Single-Leg Step-Down Between Individuals With Femoroacetabular Impingement Syndrome and Individuals Without Hip Pain. J Orthop Sports Phys Ther. 2018;48(4):270-279. doi:10.2519/jospt.2018.7794
- 12.Ng KCG, Lamontagne M, Jeffers JRT, Grammatopoulos G, Beaulé PE. Anatomic Predictors of Sagittal Hip and Pelvic Motions in Patients With a Cam Deformity. Am J Sports Med. 2018;46(6):1331-1342. doi:10.1177/0363546518755150
- 13.Patel RV, Han S, Lenherr C, Harris JD, Noble PC. Pelvic Tilt and Range of Motion in Hips With Femoroacetabular Impingement Syndrome. J Am Acad Orthop Surg. 2020;28(10):e427-e432. doi:10.5435/jaaos-d-19-00155
- 14. Ross JR, Nepple JJ, Philippon MJ, Kelly BT, Larson CM, Bedi A. Effect of changes in pelvic tilt on range of motion to impingement and radiographic parameters of acetabular morphologic characteristics. Am J Sports Medicine. 2014;42(10):2402--2409. doi:10.1177/0363546514541229



