

Preoperative cartilage damage and varus deformity of tibia are factors affecting cartilage status improvement in the medial compartment after open wedge high tibial osteotomy.

Takashi Hoshino, Hiroki Katagiri, Tomomasa Nakamura, Nobutake Ozekim, Yusuke Nakagawa, Mai Katakura, Masaki Amemiya, , Aritoshi Yoshihara, Kazuyoshi Yagishita, Ichiro Sekiya Hideyuki Koga

Institute of Science Tokyo, Japan

# **Faculty Disclosure Information**

Nothing to disclosure



# **Background**

It is known that open wedge high tibial osteotomy (OWHTO) reduces load distribution of the medial compartment by moving the load axis outward, and cartilage status improvement in the medial compartment can be expected in some cases.

Matsunaga D, et al. Knee. 2007

However, its factors had not been thoroughly investigated.

## The purposes

➤ To evaluate factors affecting cartilage status improvement in the medial compartment after OWHTO by comparing cartilage status arthroscopically at the time of OWHTO and second-look

> To investigate factors affecting cartilage status improvement.





#### **Materials and Methods**

Single center study

Between: January 2017 and May 2021

N=181 (190 knee) HTO Registered patients

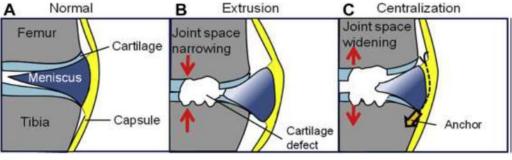
15 Excluded

· CWHTO

Data lost

N=129 (132 knee) OWHTO after implant removal surgery










# Surgical procedure

- All patients received an arthroscopic examination.
- > Arthroscopic procedures included medial meniscus procedure such as repair,
- partial resection or centralization.
- > The weight bearing line was designed to pass through at 57% after correction.
- Fixe with a locking plate (Tris Medial HTO Plate System; OLYMPUS)
- $\triangleright$  The gap created by the OWHTO was filled β-tricalcium phosphate (OLYMPUS)







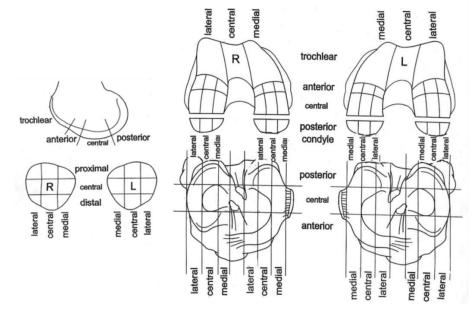













#### **Evaluations**

1 Cartilage







MFC MTP

Operation record

➤ Cartilage in both medial femoral condyle (MFC) and medial tibial plateau (MTP) were divided into 9 subregions (anterior-middle-posterior and internal-central-external) and evaluated arthroscopically according to ICRS classification during initial surgery and second-look at the time of plate removal.





### **Evaluations**

2 The factors affecting cartilage status improvement

The dependent variable

the amount of change in ICRS classification

The independent variables

age, gender, BMI, collection angle, medial meniscus procedures, pre- and post-operative radiographic parameters (%MA, MPTA, LDFA, JLCA), and preoperative ICRS grade

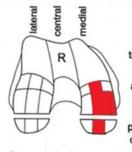


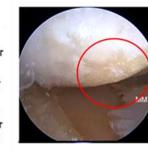


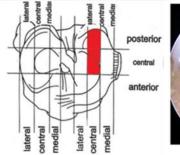
# Results

|                                        | OWHTO<br>n=129 (132 knees) |
|----------------------------------------|----------------------------|
| Age, years, mean (range)               | 62 (35-78)                 |
| Sex, female/male                       | 79/50                      |
| Height, cm, mean (range)               | 160.8 (143.1-179.0)        |
| Weight, kg, mean (range)               | 64.3 (39.2-95.4)           |
| BMI, mean (range)                      | 24.9 (18.1-33.9)           |
| Collection angle, degree, mean (range) | 8.9 (3-16)                 |
| MM Centralization                      | 99                         |







# 1 Cartilage repair


MFC

#### MTP

| MFC     |    |         | ICRS class | sification                    |            |                           |         |         | MTP     |    |         | ICRS class | ification |          |           |         |         |
|---------|----|---------|------------|-------------------------------|------------|---------------------------|---------|---------|---------|----|---------|------------|-----------|----------|-----------|---------|---------|
|         |    |         | grade 0    | grade 1                       | grade 2    | grade 3                   | grade 4 | P value |         |    |         | grade 0    | grade 1   | grade 2  | grade 3   | grade 4 | P value |
| Medial  | AM | Primary | 18 (4%)    | Charles of Control of Control | 26 (20%)   |                           | 1 (1%)  |         | Medial  | AM | Primary | 4 (3%)     | 19 (14%)  | 48 (36%) | 61 (46%)  | 0 (0%)  |         |
|         |    | Second  | 16(12%)    | PROVINGE CONTRACTOR           | 39 (30%)   | PARTITION OF THE PARTY OF | 0 (0%)  | 0.04    |         |    | Second  | 9 (7%)     | 36 (27%)  | 48 (36%) | 39 (22%)  | 0 (0%)  | <0.01   |
|         | СМ | Primary | 14 (11%)   | 17 (13%)                      | 25 (19%)   | 76 (57%)                  | 0 (0%)  |         |         | СМ | Primary | 2 (2%)     | 9 (7%)    | 50 (38%) | 71 (54%)  | 0 (0%)  |         |
|         |    | Second  | 15(11%)    | 21 (16%)                      | 38 (29%)   | 58 (44%)                  | 0 (0%)  | 0.16    |         |    | Second  | 4(3%)      | 30 (23%)  | 48 (36%) | 50 (38%)  | 0 (0%)  | <0.01   |
|         | PM | Primary | 20 (15%)   | 23 (17%)                      | 26 (20%)   | 62 (47%)                  | 1 (1%)  |         |         | PM | Primary | 1 (1%)     | 17 (13%)  | 41 (31%) | 73 (55%)  | 0 (0%)  |         |
|         |    | Second  | 13 (10%)   | 32 (24%)                      | 43 (33%)   | 44 (33%)                  | 0 (0%)  | <0.01   |         |    | Second  | 3 (23%)    | 27 (20%)  | 56 (42%) | 46 (35%)  | 0 (0%)  | <0.01   |
| Central | AC | Primary | 15 (11%)   | 17 (13%)                      | 13 (10%)   | 85 (64%)                  | 2 (2%)  |         | Central | AC | Primary | 3 (23%)    | 17 (13%)  | 45 (34%) | 67 (51%)  | 2 (2%)  |         |
|         |    | Second  |            |                               | 39 (30%)   |                           |         | <0.01   |         |    | Second  | 7 (5%)     | 34 (26%)  | 48 (36%) | 43 (33%)  | 0 (0%)  | <0.01   |
|         | СС | Primary | 7 (5%)     | 18 (14%)                      | 10 (8%)    | 96 (72%)                  | 1 (1%)  |         |         | СС | Primary | 0 (0%)     | 10 (8%)   | 28 (21%) | 94 (71%)  | 0 (0%)  |         |
|         |    | Second  | 10 (8%)    | 19 (24%)                      | 29 (22%)   | 74 (56%)                  | 0 (0%)  | 0.18    |         |    | Second  | 1 (1%)     | 19 (14%)  | 43 (33%) | 69 (51%)  | 0 (0%)  | <0.01   |
|         | PC | Primary | 18 (14%)   | 11 (8%)                       | 23 (17%)   | 79 (60%)                  | 1 (1%)  |         |         | PC | Primary | 1 (11%)    | 16 (12%)  | 28 (21%) | 86 (65%)  | 1 (1%)  |         |
|         |    | Second  | 10 (8%)    | 25 (19%)                      | 30 (23%)   | 67 (51%)                  | 0 (0%)  | <0.01   |         |    | Second  | 2 (2%)     | 27 (20%)  | 41 (31%) | 62 (47%)  | 0 (0%)  | <0.01   |
| Lateral | AL | Primary | 23 (17%)   | 20 (15%)                      | 16 (12%)   | 72 (55%)                  | 1 (1%)  |         | Lateral | AL | Primary | 13 (10%)   | 31 (23%)  | 39 (30%) | 49 (37%)  | 0 (0%)  |         |
|         |    | Second  | 19 (14%)   | 30 (23%)                      | 30 (23%)   | 53 (40%)                  | 0 (0%)  | 0.06    |         |    | Second  | 11 (8%)    | 41 (31%)  | 50 (38%) | 30 (23%)  | 0 (0%)  | 0.02    |
|         | CL | Primary | 16 (12%)   | 19 (14%)                      | 15 (11%)   | 81 (61%)                  | 1 (1%)  |         |         | CL | Primary | 11 (8%)    | 22 (17%)  | 33 (25%) | 66 (50%)  | 0 (0%)  |         |
|         |    | Second  | 16 (12%)   | 27 (20%)                      | 23 (17%)   | 66 (50%)                  | 0 (0%)  | 0.03    |         |    | Second  | 7 (5%)     | 34 (26%)  | 44 (33%) | 47 (36%)  | 0 (0%)  | 0.03    |
|         | PL | Primary | 20 (15%)   | 21 (16%)                      | 23 (17%)   | 67 (51%)                  | 1 (1%)  |         |         | PL | Primary | 15 (15%)   | 19 (14%)  | 32 (24%) | 65 (49%)  | 1 (1%)  |         |
|         |    | Second  | 10 /1 40/1 | 34 (26%)                      | 24 /4 (0/) | EQ (440/)                 | 0 (00/) | 0.07    |         |    | Second  | 10 (8%)    | 24 (260/) | 47 (36%) | 40 (200/) | 0 (00/) | 0.01    |

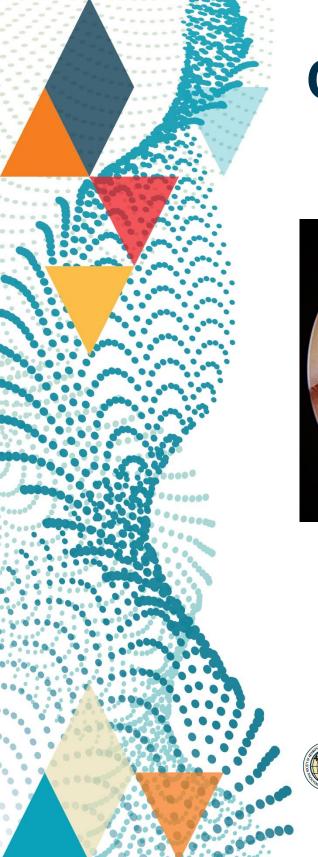








- ➤ At the time of initial surgery, ICRS classification of grade 3 or higher was more common at the central to internal subregions in the MFC and at the central subregions in the MTP.
- ➤ At the second-look surgery, following subregions of the MFC did not show significant cartilage status improvement; posterior-internal, posterior-external and anterior-external, while other subregions of the MFC and all subregions of MTP showed significant improvement.








2 The factors affecting cartilage status improvement

➤ Worse preoperative ICRS grade was detected as a factor in all MFC and MTP subregions where cartilage improvement was observed. Furthermore, smaller preoperative MPTA was also detected in middle-central regions of MFC.



# Case 69 y.o. Male

Rt.OWHTO+MM Centralization



Primary



After centralization



Second look



# Discussions

➤ The regeneration of degenerated articular cartilage can be expected while correcting a varus deformity after OWHTO without any additional procedures.

Kim K et al. Am J Sports Med 2017

➤ Cartilage regeneration is affected by BMI, the difference between the MFC and MTP, preoperative cartilage degeneration grade, and postoperative limb alignment.

Kumagai K, et al. Knee Surg Sports Traumatol Arthrosc.2017

The current study suggested that OWHTO affected the positive effect for cartilage status at loading area by reducing load distribution of the medial compartment.





The preoperative cartilage status affected cartilage repair in the medial compartment and the preoperative varus deformity of tibia affected cartilage repair at loading area of femur.