Short to Midterm Outcomes of Hip Arthroscopy for Femoroacetabular Impingement and Labral Tears in Patients with Diabetes

Roger Quesada-Jimenez, M.D.

Fellow, American Hip Institute

Disclosures

I (and/or my co-authors) have something to disclose.

Detailed disclosure information is available via:

AAOS Orthopaedic Disclosure Program on the AAOS website at http://www.aaos.org/disclosure

Introduction

- Diabetes mellitus (DM) is a world pandemic and is a known adverse prognostic factor in orthopedic surgical interventions
- There is a paucity of literature investigating its effects on hip arthroscopy for labral tears and FAI.

Purpose

 To conduct short- to mid-term analysis of the outcomes of patients with DM who underwent hip arthroscopy for FAI and labral tears, with a secondary sub analysis based on glycemic control, and a comparison of these results to a benchmark control group of patients with no DM.

Methods

- Patients were excluded if they had previous ipsilateral hip pathology, hip dysplasia defined as Lateral Center Edge Angle (LCEA) <18°, or a preoperative Tönnis osteoarthritis grade > 1.
- DM patients were matched in a 1:3 ratio based on age, sex, BMI, Acetabular Outerbridge grade, labral treatment, and capsular treatment to a benchmark control group of patients without DM.

Methods

 A sub-analysis of DM patients was conducted, dividing them into well-controlled pre-prandial glucose and uncontrolled pre-prandial glucose

Results

- DM patients had significantly lower preoperative outcome scores and lower satisfaction at latest follow-up
- Both groups had significant improvement across all PROs

Table 2. Patient-Reported Outcomes

	Diabetic Group	Control Group	P Value
	(n = 20)	(n = 75)	
mHHS			
Preoperative	49.20 ± 13.80	57.85 ± 17.32	< 0.05
Postoperative	78.45 ± 21.19	84.99 ± 16.07	0.14
Preoperative vs	< 0.01	< 0.01	
postoperative P value			
Δ	29.25 ± 16.40	27.13 ± 19.14	0.65
NAHS			
Preoperative	47.84 ± 18.49	58.07 ± 18.79	< 0.05
Postoperative	80.38 ± 20.26	84.03 ± 19.18	0.46
Preoperative vs postoperative P value	< 0.01	< 0.01	
ροsioperative P value	32.54 ± 22.21	25.96 ± 20.98	0.22
iHOT-12	32.31 - 22.21	25.50 = 20.50	0.22
Preoperative	30.76 ± 25.72	34.47 ± 21.62	0.59
Postoperative	65.73 ± 30.44	74.13 ± 27.40	0.24
Preoperative vs	< 0.01	< 0.01	0.21
postoperative P value	40.01	4 0.02	
Δ	34.85 ± 29.18	39.80 ± 26.57	0.56
HOS-SSS			
Preoperative	24.63 ± 20.19	37.15 ± 23.40	< 0.05
Postoperative	69.02 ± 33.70	70.42 ± 31.23	0.87
Preoperative vs	< 0.01	< 0.01	
postoperative P value			
Δ	43.15 ± 32.91	32.28 ± 28.25	0.18
VAS			
Preoperative	6.86 ± 2.04	5.31 ± 2.66	< 0.05
Postoperative	2.57 ± 2.40	2.20 ± 2.41	0.54
Preoperative vs	< 0.01	< 0.01	
postoperative P value			
Δ	-4.29 ± 2.25	-3.11 ± 2.92	0.10
Satisfaction	7.70 ± 2.43	8.63 ± 1.57	< 0.05

^{*}The values are given as the mean and the standard deviation in points.

mHHS – Modified Harris Hip Score, NAHS – Non-Arthritic Hip Score, HOS-SSS – Hip
Outcome Score Sport-Specific Subscale, VAS – Visual Analog Scale.

Results: Sub-analysis

 No significant differences in outcomes were observed between the well-controlled and uncontrolled DM groups

Table 3. Sub-Analysis Patient-Reported Outcomes

	Well Controlled	Uncontrolled (n = 12)	P Value
	(n = 8)		
mHHS			
Preoperative	47.25 ± 11.68	50.50 ± 15.42	0.62
Postoperative	82.20 ± 23.18	83.39 ± 19.84	0.91
Preoperative vs	< 0.01	< 0.01	
postoperative P value			
Δ	32.91 ± 19.24	32.89 ± 20.43	0.99
NAHS			
Preoperative	50.34 ± 12.46	46.17 ± 22.00	0.63
Postoperative	88.04 ± 18.23	84.27 ± 15.24	0.64
Preoperative vs	< 0.01	< 0.01	
postoperative P value			
Δ	36.93 ± 18.22	38.10 ± 23.81	0.91
iHOT-12			
Preoperative	43.43 ± 36.86	26.53 ± 22.13	0.35
Postoperative	89.49 ± 6.02	75.21 ± 27.84	0.34
Preoperative vs	< 0.05	< 0.01	
postoperative P value			
Δ	33.51 ± 52.93	47.30 ± 29.16	0.60
HOS-SSS			
Preoperative	26.91 ± 16.99	23.10 ± 22.67	0.69
Postoperative	82.55 ± 15.39	77.78 ± 28.60	0.76
Preoperative vs	< 0.01	< 0.01	
postoperative P value			
Δ	46.09 ± 12.03	51.69 ± 36.48	0.77
VAS			
Δ	-5.68 ± 2.25	-4.19 ± 2.98	0.27
Satisfaction	8.00 ± 3.70	8.00 ± 2.41	1.00

^{*}The values are given as the mean and the standard deviation in points.

mHHS — Modified Harris Hip Score, NAHS — Non-Arthritic Hip Score, HOS-SSS —
Hip Outcome Score Sport-Specific Subscale, VAS — Visual Analog Scale.

Complications and Secondary Surgery

- The non-DM patients had significantly more revision arthroscopies than the DM group (p < 0.05) with a relative risk of 2.63.
- Complication rates were similar between groups.

Table 4. Secondary Surgeries and Complications

Diabetic Group	Control Group	P Value
7 (24.1%)	8 (9.2%)	< 0.05
6.86 ± 1.03		NA
46.27 ± 44.89	52.44 ± 31.89	0.46
2 (6.9%)	4 (4.6%)	1.0
6.19 ± 1.72		NA
44.02 ± 32.49	26.43 ± 9.98	0.42
4 (13.8%)	5 (5.7%)	0.16
6.48 ± 1.52		NA
	$7 (24.1\%)$ 6.86 ± 1.03 46.27 ± 44.89 $2 (6.9\%)$ 6.19 ± 1.72 44.02 ± 32.49 $4 (13.8\%)$	7 (24.1%) 8 (9.2%) 6.86 ± 1.03 46.27 \pm 44.89 52.44 \pm 31.89 2 (6.9%) 4 (4.6%) 6.19 \pm 1.72 44.02 \pm 32.49 26.43 \pm 9.98 4 (13.8%) 5 (5.7%)

Conclusion

- Hip arthroscopy for the treatment of FAI and labral tears in DM patients resulted in significant short- to mid-term improvements in PROs, comparable to a matched control non-DM group.
- DM patients had an overall 2.63-fold increased relative risk of revision hip arthroscopy compared to non-DM patients, with a trend of more uncontrolled DM patients undergoing revision hip arthroscopy. Perioperative diabetic control is recommended.

References

- 1. Cerri-Droz PE, Ling K, Aknoukh S *et al.* Diabetes mellitus as a risk factor for postoperative complications following arthroscopic rotator cuff repair. *JSES Int* 2023;7:2361–6.
- 2. Deng Y, Smith PN, Li RW. Diabetes mellitus is a potential risk factor for aseptic loosening around hip and knee arthroplasty. *BMC Musculoskelet Disord* 2023;**24**:266.
- 3. Gupta S, Sharma N, Arora S et al. Diabetes: a review of its pathophysiology, and advanced methods of mitigation. Curr Med Res Opin 2024;40:773-80.
- 4. Lekkala S, Taylor EA, Hunt HB et al. Effects of Diabetes on Bone Material Properties. Curr Osteoporos Rep 2019;17:455–64.
- 5. McVey LC, Kane N, Murray H et al. Elective hip arthroplasty rates and related complications in people with diabetes mellitus. HIP Int 2022;32:717–23.
- 6. Viigimaa M, Sachinidis A, Toumpourleka M *et al.* Macrovascular Complications of Type 2 Diabetes Mellitus. *Curr Vasc Pharmacol* 2020;**18**:110–6.
- 7. Domb BG, Annin S, Monahan PF *et al.* Ten-Year Survivorship, Outcomes, and Sports Participation in Athletes After Primary Hip Arthroscopy for Femoroacetabular Impingement Syndrome. *Am J Sports Med* 2023;**51**:2383–95.
- 8. Griffin DW, Kinnard MJ, Formby PM *et al.* Outcomes of Hip Arthroscopy in the Older Adult: A Systematic Review of the Literature. *Am J Sports Med* 2017;**45**:1928–36.

