

The Ankle-GO score is linked to the likelihood of achieving coper status following a lateral ankle sprain: a 1-year prospective cohort analysis.

Ronny Lopes, MD Centre Orthopédique Santy, Lyon, France

Alexandre Hardy, MD, PhD, Paris, FRANCE François Fourchet, PhD, Geneve, SWITZERLAND Brice Picot, PhD, Chambery, FRANCE

S.ANT)

Disclosure Information

Background

- . Lateral ankle sprain (LAS) is common in athletes
- . Up to 70% develop chronic ankle instability (CAI)
- Only ~30% become copers (no recurrent sprains, no giving-way, return to preinjury sport)
- . No tool currently predicts who becomes a coper

Study Objectives

Primary Aim:

 Assess association between 2-month Ankle-GO score and coper status at 1 year

Secondary Aim:

. Identify other predictors (e.g., sex, function, sport level)

What Is the Ankle-GO Score?

- Composite score:max 25 points
- 4 functional tests:SLS, SEBT, SHT, F8T
- 2 questionnaires:FAAM (ADL & Sport), ALR-RSI

	TE	STS	RAW VALUES	POINTS	MAXIMUM SCORE	
	Single leg stance test		> 3 errors	0	SCORE	
	(SLS)		1 - 3 errors	1	3	
			0 error	2		
NG			No apprehension	+1		
ST	Star excursion		< 90%	0		
Ë	balance test (SEBT)		90 - 95%	2		
			> 95%	4	7	
ž			Anterior (ANT) > 60 %	+1		
M			Posteromedial (PM) > 90	+1	•	
Ö			%	. 1		
ΣE			No apprehension	+1		
A	Side hop 7	Test (SHT)	> 13 s	0		
Ψ			10 - 13 s	2		
ON			< 10 s	4	5	
FUNCTIONAL PERFORMANCE TESTING			No apprehension	+1		
	Figure-of-8 hop Test (F8T)		> 18 s	0	3	
			13 - 18 s	1		
			< 13 s	2		
			No apprehension	+1		
	Foot	Activities	< 90 %	0		
△ ≅	and	of Daily	90 – 95 %	1	2	
	Ankle	Living	> 95 %	2		
OR	Ability Measure	Sport	< 80 %	0		
ME	(FAAM)		80 – 95 %	1	2	
E E	(> 95 %	2		
O.	Ankle ligament reconstruction- return to sport after injury (ALR-RSI)		< 55 %	0		
PATIENT REPORTED OUTCOME MEASURE			55-63 %	1		
			63 – 76 %	2	3	
			> 76 %	3		
Ankle- GO	25					

Study Design

- . **Design:** Prospective cohort (2021–2022)
- . **Setting:** Clinique du Sport, Paris
- . **Participants**: 64 LAS patients (age ~34, 56% female)

Follow-up: 1 year (phone interview)

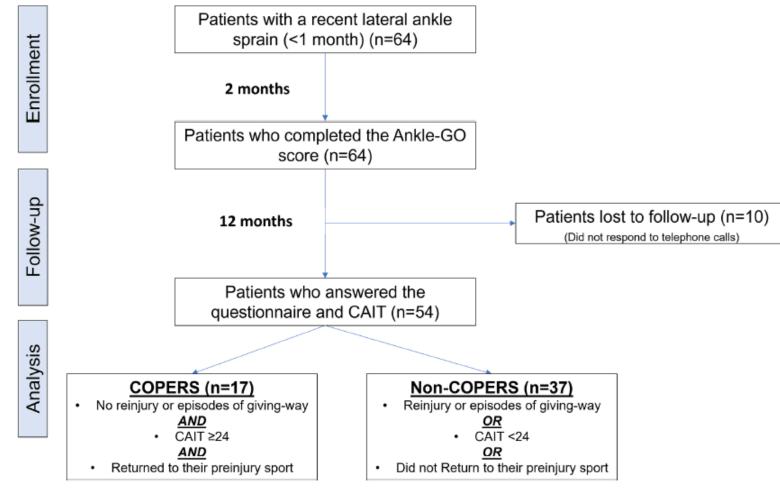


Figure 1 Flowchart of inclusion and analysis. CAIT, Cumberland Ankle Instability Tool.

Participant Characteristics

- . At 12 months:
 - Copers = 17 (31.5%)
 - Non-copers = 37 (68.5%)

Copers = No giving-way, no recurrence, CAIT ≥ 24, RTS

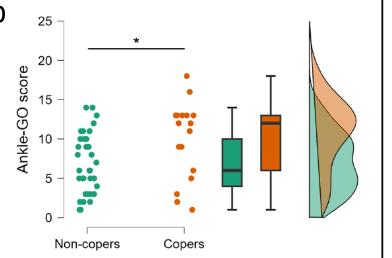
Table 1 Participants baseline characteristics (means±SD or median and IQR for non-parametric tests) and comparisons between copers and non-copers 1 year after lateral ankle sprain

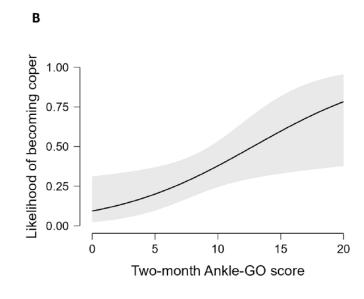
Participants at baseline (n=64)				
Sex	36 females (56	36 females (56%) and 28 males (44%)		
Age (years)	34.8±13.2			
Type of sport, n (%)				
Pivot contact	19 (30%)			
Pivot	22 (34%)			
In line	23 (36%)			
Level of sport, n (%)				
Professional	2 (3%)			
Intensive (>6 hours per week)	21 (33%)			
Regular (2–6 hours per week)	34 (53%)	34 (53%)		
Casual (<2 hours per week)	7 (11%)			
Total protocol completion (n=54	patients)			
Lost to follow-up	10/64 patients (15%)			
	Copers, n=17 (31%)	Non-copers, n=37 (62%)	P value	
Sex (males/females)	11/6	12/25	0.026	
Age (years)*	27±19	34±15	0.285	
Ankle-GO (points)	9.9±4.9	6.9±3.7	0.015	
Type of sport, n (%)				
Pivot contact	6 (35%)	9 (24%)	0.677	
Pivot	3 (18%)	9 (24%)		
In line	8 (47%)	19 (52%)		
Level of sport, n (%)				
Professional	1 (6%)	1 (3%)	0.869	
Intensive (>6 hours per week)	6 (35%)	12 (32%)		
Regular (2–6 hours per week)	hours per week) 8 (47%) 21 (57%			
Casual (<2 hours per week)	2 (12%)	3 (8%)		

^{*}Non-parametric test (data are expressed in median and IQR with Mann-Whitney U tests).

Key Results:

Ankle-GO Score Predicts Outcome


AUC = **0.70** → fair predictive ability


Cut-off = 11 points

• >11 → coper likelihood ↑ from 28% to 69%

• <11 → coper likelihood ↓ to 6.8% [^]

Table 2 2×2 contingency table of coper status and Ankle-GO score					
Ankle-GO >11 points	Copers	Non-copers	Total		
YES	9 (69%)	4 (31%)	13		
NO	8 (19%)	33 (81%)	41		
Total	17	37	54		

Figure 2 (A) Ankle-GO scores at 2 months among copers and non-copers 1 year after lateral ankle sprain injury. (B) Estimate plot of the probability to become coper according to 2-month Ankle-GO score. *p=0.015 The shaded area represents the 95% CIs.

Secondary Findings

- Males → ×5 more likely to become copers (OR = 5.2)
- Other predictors not statistically significant
- No single test/item predicted outcome – total score matters

Table 3 Distribution of the raw values (mean±SD or median±IQR for non-parametric tests) of the 2-month Ankle-GO score according to the recovery status (copers vs non-copers) 1 year after lateral ankle sprain

	Copers (n=17)	Non-copers (n=37)	P value
FAAM _{adl} (%)*	92.9±8.3	84.5±14.3	0.058
FAAM _{sport} (%)*	71.9±34.4	59.4±34.4	0.097
ALR-RSI (%)*	55.8±46.7	46.7±29.2	0.083
SLS (errors)*	2±4	4±3	0.232
SEBT COMP (%)	82.3±6.2	78.4±7.8	0.079
SEBT ANT (%)	63±5.2	59.2±7.2	0.054
SEBT PM (%)	95.2±7.1	90.7±9.1	0.079
SEBT PL (%)	90.3±9.9	85.3±11	0.118
SHT (s)	17.5±11.2	23.7±11.2	0.065
F8T (s)*	14.5±5	19±16	0.057

^{*}Non-parametric test (data are expressed in median and IQR with Mann-Whitney U tests).

ALR-RSI, Ankle Ligament Reconstruction Return to Sport after Injury; ANT, Anterior; COMP, Composite score; FAAM_{adl-sport}, Foot and Ankle Ability Measures-Activities of daily living & sport subscales; F8T, Figure of Eight Test; PL, posterolateral; PM, posteromedial; SEBT, Star Excursion Balance Test; SHT, Side Hop Test; SLS, Single Leg Stance.

Discussion

- No single Ankle-GO item predicted outcome → full score is key
- . <14 pts → no patient became coper
- . Female sex = independent risk factor
- . RTS criteria must go beyond timebased decisions

Clinical Implications

- √ Use

 ✓ Ankle-Go during RTS decision-making
- √ >11 pts = safe RTS
- ✓ <11 pts and female → more rehab before RTS</p>
- √ Online calculator: <u>anklego.com</u> or QR code

Conclusion

- . Ankle-Go is a useful RTS tool after LAS
- . Predicts long-term coper status
- . >11 points → ×12 increased chance of full recovery
- . >11 points and ♂→ best predictors
- . Further research needed in elite athletes and rehab protocols

References:

Hong Y, Chan L-K,

et al. A systematic review on ankle injury and ankle

sprain in sports. Sports Med 2007;37:73-94.

2 Doherty C, Delahunt E, Caulfield B, et al. The incidence and prevalence of ankle sprain

injury: a systematic review and meta-analysis

of prospective epidemiological studies.

Sports Med 2014:44:123-40.

3 Gribble PA, Bleakley CM, Caulfield BM, et al. 2016 consensus statement of the J international ankle consortium: prevalence, impact and long-term

consequences of

lateral ankle sprains, Br J Sports Med 2016:50:1493-5.

4 Attenborough AS, Hiller CE, Smith RM, et al. Chronic ankle instability in

populations. Sports Med 2014;44:1545-56.

5 Hertel J, Corbett RO. An updated model of chronic ankle instability. J Athl Train

2019;54:572-88

6 Martin RL, Davenport TE, Fraser JJ, et al. Ankle stability and movement coordination

impairments: lateral ankle ligament sprains revision 2021: clinical practice guidelines

linked to the international classification of functioning, disability and health

association. J Orthop Sports Phys ThAer 2021;51.

7 Anandacoomarasamy A, Barnsley L. Long term outcomes of inversion ankle injuries. Br

J Sports Med 2005:39:e14.

8 Konradsen L, Bech L, Ehrenbjerg M, et al. Seven years follow-up after ankle inversion

trauma. Scand J Med Sci Sports 2002;12:129-35.

9 Hong CC, Calder J. The Burden of the "Simple Ankle Sprains": a review of the epidemiology and long-term

impact, Foot Ankle Clin 2023:28:187-200.

10 Golditz T, Steib S, Pfeifer K, et al. Functional ankle instability as a risk factor

osteoarthritis: using T2-mapping

to analyze early cartilage degeneration in the ankle

joint of young athletes. Osteoarthr Cartil 2014;22:1377-85.

11 Wikstrom EA, Brown CN, Minimum reporting standards for copers in chronic score

instability research. Sports Med 2014:44:251–68.

12 Doherty C, Bleakley C, Hertel J, et al. Dynamic balance deficits 6 months following

first-time

acute lateral ankle sprain; a laboratory analysis. J Orthop Sports Phys Ther 2015:45:626-33.

13 Doherty C. Bleakley C. Hertel J. et al. Lower limb interioint postural coordination one

vear after first-time

lateral ankle sprain. Med Sci Sports Exerc 2015:47:2398–405.

14 McCann RS, Crossett ID, Terada M, et al. Hip strength and star excursion

balance test deficits of patients with chronic ankle instability. J Sci Med Sport 2017;20:992-6.

15 Pourkazemi F, Hiller CE, Raymond J, et al. Predictors of chronic ankle

after an index lateral ankle sprain; a systematic review, J Sci Med Sport 2014;17:568-73.

16 Doherty C, Bleakley C, Hertel J, et al. Recovery from a first-time lateral ankle sprain

Sports Med 2016:44:995–1003.

17 Terrier P, Piotton S, Punt IM, et al. Predictive factors of recovery after an

ankle sprain: a longitudinal study. Sports (Basel) 2021;9:41.

18 Wikstrom EA, Tillman MD, Chmielewski TL, et al. Discriminating between copers and

people with chronic ankle instability. J Athl Train 2012;47:136–42.

19 Tassignon B, Verschueren J, Delahunt E, et al. Criteria-based

return to sport decision-making

following lateral ankle sprain injury: a systematic review and narrative synthesis. Sports Med 2019;49:601-19.

20 McCann R, Kosik K, Terada M, et al. Residual impairments and activity

return to play from a lateral ankle sprain. Int J Athl Ther Train 2018;23:83–8. 21 Smith MD, Vicenzino B, Bahr R, et al. Return to sport decisions after an acute Sports Health 2022;14:336–47.

the academy of orthopaedic physical therapy of the American physical therapy lateral ankle sprain injury: introducing the PAASS framework-an

multidisciplinary consensus. Br J Sports Med 2021;55:1270-6.

22 Wikstrom EA, Mueller C, Cain MS. Lack of consensus on return-to-

sport criteria

following lateral ankle sprain: a systematic review of expert opinions. J Sport Rehabil

2020:29:231-7.

23 Lam KC, Marshall AN, Bay RC, et al. Patient-reported

outcomes at return to sport after

lateral ankle sprain injuries: a report from the athletic training practice-based rese arch

network, J Athl Train 2023:58:627-34.

24 Picot B. Lopes R. Rauline G. et al. Development and validation of the ankle-

for discriminating and predicting return-to-

outcomes after lateral ankle sprain.

Sports Health 2024:16:47-57.

25 Picot B, Fourchet F, Lopes R, et al. Low ankle-go

score while returning to sport

after lateral ankle sprain leads to a 9-fold increased risk of recurrence: a two-year

prospective cohort study. Sports Med Open 2024:10:23.

26 Thompson JY, Byme C, Williams MA, et al. Prognostic factors for recovery

acute lateral ankle ligament sprain: a systematic review. BMC Musculos kelet

2017;18:421

27 Mas on J, Kniewasser C, Hollander K, et al. Intrinsic risk factors for ankle

between male and female athletes: a systematic review and meta-analysis. Sports

Med Open 2022;8:139.

28 Delahunt E, Remus A. Risk factors for lateral ankle sprains and chronic ankle Measure in and the predictors of chronic ankle instability: a prospective cohort analysis. Aminstability. J Athl Train 2019;54:611-6.

29 Gribble PA, Delahunt E, Bleakley C, et al. Selection criteria for patients with

ankle instability in controlled research: a position statement of the International Ankle

Consortium. Br J Sports Med 2014;48:1014-8.

30 Netterström-Wedin

F, Bleakley C. Diagnostic accuracy of clinical tests assessing

ligamentous injury of the ankle syndesmosis: a systematic review with metaanalysis.

Phys Ther Sport 2021;49:214-26.

31 Netterström-Wedin

F, Matthews M, Bleakley C. Diagnostic accuracy of clinical tests

assessing ligamentous injury of the talocrural and subtalar joints: a systematic revie w

with meta-analysis.

32 Obuchowski NA, McClish DK. Sample size determination for diagnostic

studies involving binormal ROC curve indices. Stat Med 1997;16:1529-42. 33 Riemann BL, Caggiano NA, Lephart SM. Examination of a clinical method of

assessing postural control during a functional performance task. J Sport Rehabil athletes with chronic ankle instability. Phys Ther Sport 2023;61:45-50.

34 Gribble PA, Hertel J, Plisky P. Using the Star Excursion Balance Test to assess gendered dvnamic

postural-control

deficits and outcomes in lower extremity injury: a literature and systematic review. J Athl Train 2012:47:339-57.

35 Docherty CL, Arnold BL, Gansneder BM, et al. Functional-performance

volunteers with functional ankle instability. J Athl Train 2005:40:30-4.

36 Caffrey E. Docherty CL. Schrader J. et al. The ability of 4 single-limb hopping tests to

detect functional performance deficits in individuals with functional ankle instability. J

Orthop Sports Phys Ther 2009:39:799–806.

37 Martin RL, Irrgang JJ, Burdett RG, et al. Evidence of validity for the Foot and Ankle

Ability Measure (FAAM), Foot Ankle Int 2005;26:968-83.

38 Picot B. Grimaud O. Rauline G. et al. Validity and reproducibility of the ARL-RSI

score

to assess psychological readiness before returning to sport after lateral ankle sprain. J

Exp Orthop 2024:11:e12073.

39 Bahr R, Clarsen B, Derman W, et al. International Olympic Committee

consensus

statement: methods for recording and reporting of epidemiological data on

and illness in sport 2020 (including STROBE Extension for Sport Injury and Illness Surveillance (STROBE-SIIS)).

Br J Sports Med 2020;54:372-89

40 Carcia CR, Martin RL, Drouin JM. Validity of the Foot and Ankle Ability

athletes with chronic ankle instability. J Athl Train 2008;43:179-83. 41 Mansoumia MA, Collins GS, Nielsen RO, et al. A checklist for statistical

medical papers (the CHAMP statement): explanation and elaboration. Br J Sports Med

2021;55:1009-17.

42 Hosmer D, Lemeshow S, Sturdivant R. Model-Building

Strategies and Methods

for Logistic Regression. Applied Logistic Regression. John Wiley & Sons Ltd.

43 Pourkazemi F, Hiller CE, Raymond J, et al. Predictors of recurrent sprains after an index

lateral ankle sprain: a longitudinal study. Physiotherapy 2018;104:430-7. 44 Lu J, Wu Z, Adams R, et al. Sex differences in the relationship of hip strength

and functional performance to chronic ankle instability scores. J Orthop Surg

2022;17:173.

45 Watanabe K, Koshino Y, Kawahara D, et al. Kinesiophobia, self-reported

function, and sex are associated with perceived ankle instability in college club sports

46 Parsons JL, Coen SE, Bekker S. Anterior cruciate ligament injury: towards a

environmental approach, Br J Sports Med 2021;55:984–90.

47 Petrie KA. Chen JN. Miears H. et al. Gender differences in seeking health care

postintervention pain outcomes in foot and ankle orthopedic patients. Womens Health Reports 2022:3:500-7.

48 Button K, van Deursen R, Price P, Classification of functional recovery of anterior

cruciate ligament copers, non-copers.

and adapters. Br J Sports Med 2006;40:853-9; .

49 Ardern CL. Glasgow P. Schneiders A. et al. 2016 Consensus statement on

sport from the first world congress in sports physical therapy, Bern. Br J Sports Med

2016:50:853-64

50 Hiller CE, Refshauge KM, Herbert RD, et al. Intrinsic predictors of lateral ankle sprain

in adolescent dancers: a prospective cohort study. Clin J Sport Med 2008;18:44-

51 van Rijn RM, van Os AG, Bernsen RMD, et al. What is the clinical course of acute ankle

sprains? A systematic literature review. Am J Med 2008;121:324-31.

