Labral Revision Reconstruction in the Hip: Midterm Outcomes with a Nested Propensity-Matched Control

Ady Kahana-Rojkind, M.D.
Fellow, American Hip Institute Research Foundation

Disclosures

I (and/or my co-authors) have something to disclose.

Detailed disclosure information is available via:

AAOS Orthopaedic Disclosure Program on the AAOS website at http://www.aaos.org/disclosure

Introduction

- Differences in outcomes between primary and revision hip arthroscopy are well-documented
- However, comparisons between primary and revision labral reconstruction are limited, especially midterm outcomes
- Purpose: to evaluate whether revision arthroscopic labral reconstruction achieves comparable minimum 5-year patient-reported outcomes (PROs) and survivorship to primary labral reconstruction.

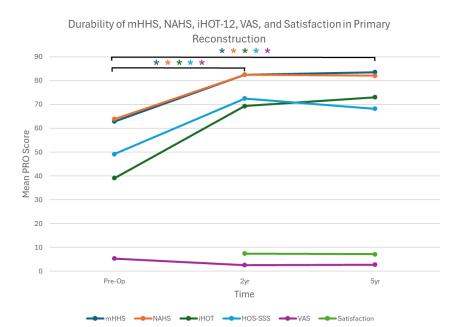
Methods

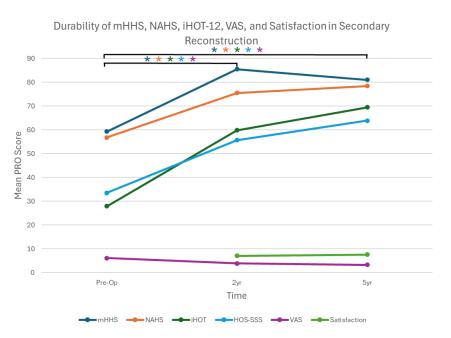
- Inclusion Criteria:
 - Revision labral reconstruction
 - O Preoperative and minimum 5-year follow-up for:
 - > mHHS, NAHS, HOS-SSS, iHOT-12, VAS, and patient satisfaction
- Exclusion Criteria:
 - Tonnis >1, pre-existing hip conditions, LCEA <20, GM Repair, WC claims
- 1:1 Matching Criteria:
 - Age, Sex, BMI, LCEA, and Capsular Treatment

Results

Preoperatively

 Primary reconstruction cohort had greater cartilage damage but higher baseline NAHS, iHOT-12, and HOS-SSS scores (p < 0.01).


• 5-year follow-up


o Both cohorts showed significant improvements in all PROs (p < 0.01) with no significant differences in postoperative outcomes (p > 0.01) or in achieving clinically meaningful thresholds.

Patient Reported Outcome	Primary Reconstruction	Revision	P-Value
mHHS			
Pre-operative	62.9 ± 15.4	59.3 ± 11.5	0.31
Post-operative	83.5 ± 17.2	81 ± 18.6	0.55
Delta	19.5 ± 21.4	22.1 ± 21.2	0.65
P-Value	<.0001	<.0001	
NAHS			
Pre-operative	63.9 ± 15.6	56.8 ± 12.5	0.048
Post-operative	82.1 ± 16.5	78.4 ± 19.1	0.4
Delta	17.5 ± 18.1	21.5 ± 21.4	0.45
P-Value	<.0001	<.0001	
іНОТ			
Pre-operative	39.1 ± 22.1	27.9 ± 15.4	0.04
Post-operative	73.0 ± 23.8	69.4 ± 25.6	0.71
Delta	42.9 ± 29.1	43.1 ± 35.2	0.99
P-Value	<.0001	<.0001	
HOS-SSS			
Pre-operative	49.2 ± 24.2	33.5 ± 19.4	0.004
Post-operative	68.2 ± 29.4	63.8 ± 27.2	0.5
Delta	19.2 ± 40.6	28.9 ± 34.3	0.39
P-Value	0.01	<.0001	
VAS			
Pre-operative	5.35 ± 2.38	6.08 ± 1.86	0.16
Post-operative	2.78 ± 2.19	3.25 ± 2.64	0.68
Delta	-2.43 ± 2.60	-2.64 ± 3.40	0.79
P-Value	0.0002	<.0001	
Satisfaction	7.17 ± 3.22	7.56 ± 2.36	0.96

Results

Conclusions

- Both primary and revision arthroscopic labral reconstructions provide significant, durable clinical improvements over a minimum 5-year follow-up
- Midterm outcomes were comparable, highlighting the efficacy of revision reconstruction in appropriately selected patients.
- Ankem HK, Diulus SC, Kyin C, et al. Favorable Outcomes of Revision Hip Arthroscopy Irrespective of Whether Index Surgery was Performed by the Same Surgeon or a Different Surgeon. *JAAOS Glob Res Rev.* 2021;5(12).
- Bodendorfer BM, Alter TD, Wolff AB, et al. Multicenter Outcomes After Revision Hip Arthroscopy: Comparative Analysis of 2-Year Outcomes After Labral Repair Versus Labral Reconstruction. Am J Sports Med. 2021;49(11):2968-2976.
- Jimenez AE, Lee MS, Owens JS, et al. Revision Hip Arthroscopy With Labral Reconstruction for Irreparable Labral Tears in Athletes: Minimum 2-Year Outcomes With a Benchmark Control Group. Am J Sports Med. 2022;50(6):1571-1581.
- Park N, Klug T, Patel S, et al. Patients Undergoing Revision Hip Arthroscopy With Labral Reconstruction or Labral Repair and Patient-Reported Outcomes: A Systematic Review. Orthop J Sports Med. 2024;12(9):23259671241270356.

