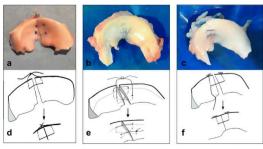
Arthroscopic all-inside repair using absorbable sutures provides satisfactory results for radial tears of lateral meniscus midbody in a stable knee: A minimum follow-up of 2 years

Jun-Ho Kim^{1,} Sunin Yoo² Jin-Hwan Ahn³, and Sang-Hak Lee²

¹Department of Orthopaedic Surgery, Hallym University Sacred Heart Hospital, Gyeonggi-do, Korea ²Department of Orthopaedic Surgery, Kyung-Hee University Hospital at Gangdong, Seoul, Korea ³Department of Orthopaedic Surgery, Kang-Buk Samsung Hospital, Seoul, Korea

Disclosure of Conflict of Interest

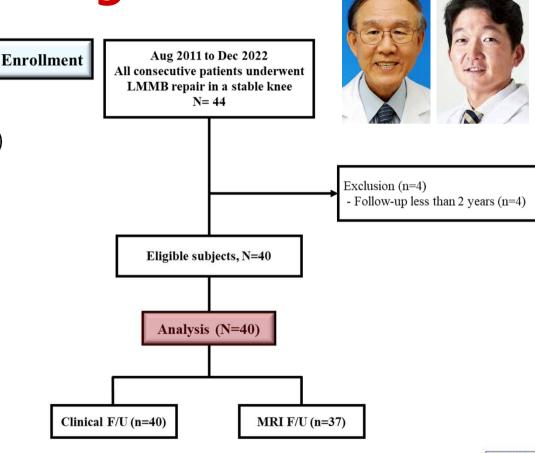
❖ We have nothing to declare for this study



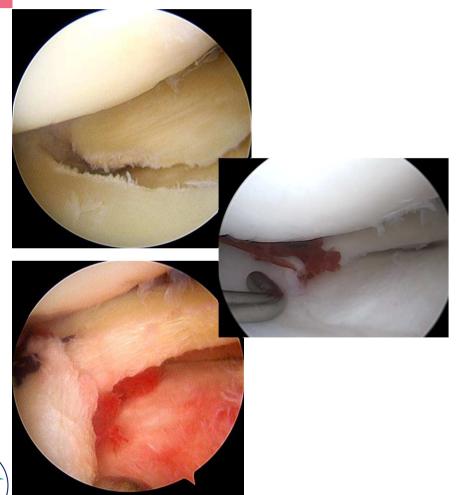
Introduction

- * Repair of radial tears has become 'the mainstream treatment' in recent years to maintain hoop tension of the meniscus
- ❖ Complete radial tear of lateral meniscus (LM) is **challenging to repair**
- As an LM radial tear frequently occurs with ACL injury, previous studies mainly reported satisfactory outcomes of **LM repair** in the setting of **ACL reconstruction**, **promoting healing enhancement**.
- However, only a few studies reported the result of LM repair in the setting of a stable knee and risk factors for incomplete healing after LM repair in a stable knee

Purpose


- * To report the clinical outcomes of arthroscopic all-inside repair using absorbable sutures for radial tears of lateral meniscus midbody in a stable knee
- * To determine the risk factors for failure or incomplete healing on MRI after the meniscal repair.

Study design


- Multicenter study
 - ✓ Two separate institutions (AJH & LSH)
- * Retrospective review (inclusion criteria)
 - ✓ From Aug. 2011 to Dec. 2022
 - ✓ Consecutive patients
 - ✓ LMMB repair for radial tear using absorbable sutures in a stable knee
 - ✓ Minimum 2-year follow-up
- Exclusion criteria
 - ✓ Concomitant ACLR
 - ✓ Complete discoid LM

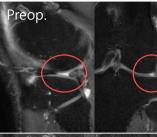
Surgical technique

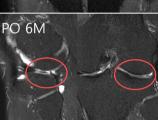
Rehabilitation protocol

- Almost similar postoperative rehabilitation protocol
 - ✓ Range of motion
 - ✓ Immobilization for postoperative 2 days
 - ✓ Allow range of motion up to 90° until postoperative 4 weeks
 - ✓ Allow full range of motion at postoperative 8 weeks
 - ✓ Weight bearing
 - ✓ Non-weight bearing for postoperative 4 weeks
 - ✓ Partial weight bearing starts at postoperative 4 weeks
 - ✓ Full weight bearing starts at postoperative 8 weeks

Evaluation

Arthroscopic


- Meniscal tear characteristics
 - ✓ Normal LM vs. incomplete discoid-shape LM
 - ✓ Tear pattern: radial tear only vs. complex tear
 - ✓ Tear extension: Zone 1/2/3
- Cartilage status
 - ✓ ICRS grade 0 / 1-2 / 3-4
- Repair characteristics
 - ✓ Technique: all-inside / outside-in combination
 - ✓ No. of sutures
 - ✓ Healing enhancement : None vs. Fibrin-clot augmentation


Radiologic

- Pre- and post-operative evaluation
- Simple radiographs
 - ✓ Hip-knee-ankle angle (HKAA)
 - ✓ Lateral joint space width (LJSW)

MRI evaluation

- ✓ Preoperative and postoperative at 6 months
- ✓ Lateral meniscus extrusion (LME) on coronal
 & sagittal images
- ✓ Healing status
 - ✓ Complete healing vs. incomplete healing
 - Total disruption at the previous location and displaced meniscal fragment or separation of the edges greater than 1 mm

Clinical evaluation

- Pre- and post-operative evaluation
- Range of motion
- Lysholm score
- IKDC subjective score
- Failure
 - ✓ Lateral MAT or revision surgery for LM
 - Consider re-operation due to symptom aggravation

Statistical analysis

- ❖ Student's *t*-test or Mann-Whitney *U*-test
 - ✓ Continuous variable outcome between the groups
- Fisher's exact or chi-square test
 - ✓ Compare proportions between the groups
- ❖ Paired *t*-test or Wilcoxon signed-rank test
 - ✓ Preoperatively vs Postoperatively
- Uni- and multi-variable regression analysis
 - ✓ To find risk factors for failure or incomplete healing on MRI
- Kaplan-Meir analysis for suvivorship
- SPSS® (ver 25.0, SPSS Inc, Chicago, IL)

Results

Demographics

Variables	RT-LMMB
Patients	40
Age at injury, years	26.4 ± 10.1 (11 – 55)
Sex, (Male : Female)	36 : 4
Site, (Right : Left)	24 : 16
Height, cm	170.7 ± 6.9 (154 – 186)
Weight, kg	76.2 ± 13.7 (53 – 115)
BMI, kg/cm ²	26.1 ± 4.0 (20.1 – 39.8)
Smoking, (non- smoker/smoker)	28 : 12
Follow-up period, months	37.2 ± 25.7 (24.0 – 147.2)

Arthroscopic findings

Variables	RT-LMMB (n=40)
LM shape (normal : incomplete discoid-shape)	23 : 17
Tear pattern (radial tear only : complex)	24: 16
Tear extension (zone 1/2/3)	37/3/0
Cartilage status (lateral compartment)	
ICRS grade (0/ 1-2/ 3-4)	26 / 6 / 8
Repair technique	
all-in side/ out-side in combination	22 / 18
Number of sutures	2.4 ± 0.9 (1 – 5)
Healing enhancement	
Fibrin-clot augmentation / none	21 / 19

Results

Radiologic

Variables	Preoperative	Postoperative	<i>P</i> value
HKA angle, °	0.3 ± 2.7	0.6 ± 2.7	.526
LJSW, mm	4.7 ± 0.9	4.5 ± 0.7	.061
Coronal LME, mm	3.8 ± 1.3	3.8 ± 1.3	.824
Sagittal LME, mm	26.1 ± 3.8	26.8 ± 3.8	.160
Healing status, n (%)	No significant difference		
Complete healing	-	28 (77.7)	-
Incomplete healing	-	9 (22.3)	-

Clinical

Variables	Preoperative	Postoperative	<i>P</i> value
ROM			
flexion contracture,	2.0 ± 5.5	0.75 ± 0.47	.029
further flexion, °	122.2 ± 31.0	127.4 ± 37.0	.378
Lysholm score	63.0 ± 23.4	92.3 ± 8.8	.003
IKDC subjective score	37.3 ± 26.8	81.5 ± 19.6	.001
Failure, n (%)			
Revision surgery	-	0	-
Consider revision op.	-	1 (2.5)	-

Results

Risk factors for meniscal incomplete healing

Variables	Univariable, ß (<i>P</i> value)	Multivariable, β (<i>P</i> value)
Age	0.009 (.817)	-
BMI < 25 vs. ≥ 25	2.7 (.018)	6.2 (.043)
Time interval from injury to op. < 6 months vs. ≥ 6 months	-0.506 (.574)	-
LM shape normal vs. incomplete discoid- shape	2.0 (.026)	4.5 (.022)
Tear pattern radial only vs. complex	0.658 (.395)	-
Healing enhancement	0.366 (.635)	
Δ Coronal LME	0.031 (.912)	
Δ Sagittal LME	0.491 (.014)	0.926 (.021)

Subgroup analysis (clinical)

Variables	Complete healing (N=28)	Incomplete healing (N=9)	<i>P</i> value
Flexion contracture, °			
Preoperative	1.3 ± 3.2	3.9 ± 9.9	.794
Postoperative	0.1 ± 0.6	0 ± 0	.876
Further flexion, °			
Preoperative	120.2 ± 35.9	123.9 ± 15.9	.566
Postoperative	123.4 ± 43.7	136.1 ± 6.5	>.999
Lysholm score			
Preoperative	67.8 ± 20.6	52.7 ± 22.0	.073
Postoperative	89.6 ± 9.5	97.0 ± 4.4	.279
IKDC subjective score			
Preoperative	44.9 ± 22.4	35.9 ± 17.5	.213
Postoperative	74.9 ± 21.2	93.0 ± 1.7	.376

Conclusion

- ❖ 'Arthroscopic all-inside repair using absorbable suture' provides excellent clinical and radiologic results with 97.5% survival for radial tear of LM mid-body in a stable knee with a minimum follow-up of 2 years
- Patients with a BMI ≥ 25, an incomplete discoid-shape of lateral meniscus, and increased LME on the sagittal plane after repair were found to be significant risk factors for incomplete healing on postoperative MRI.
 - ✓ However, clinical outcomes were not significantly different.

References

- •Uchida R, Horibe S, Shiozaki Y, et al. All-inside suture repair for isolated radial tears at the midbody of the lateral meniscus. *Arthrosc Tech.* 2019;8(12):e1451-e1456.
- •Steiner SRH, Feeley SM, Ruland JR. Outside-in repair technique for a complete radial tear of the lateral meniscus. *Arthrosc Tech.* 2018;7(3):e285-e289. Choi NH, Kim TH, Son KM, Victoroff BN. Meniscal repair for radial tears of the midbody of the lateral meniscus. *Am J Sports Med.* 2010;38(12):2472-2476.
- •Yeh SH, Hsu FW, Chen KH, et al. Repairing complete radial tears of the lateral meniscus: Arthroscopic all-inside double vertical cross-suture technique is effective and safe with 2-year follow-up at minimum. *Arthroscopy.* 2022;38(6):1919-1929.
- •James EW, LaPrade CM, Feagin JA, LaPrade RF. Repair of a complete radial tear in the midbody of the medial meniscus using a novel crisscross suture transtibial tunnel surgical technique: a case report. *Knee Surg Sports Traumatol Arthrosc.* 2015;23(9):2750-2755.
- •Lin JS, Akers A, Miller TL. Updates and advances in the management of lateral meniscal radial tears: A critical analysis review. *JBJS Rev.* 2020;8(5):e2000056.
- •Ra HJ, Ha JK, Jang SH, Kim JG. Arthroscopic inside-out repair of complete radial tears of the meniscus with a fibrin clot. *Knee Surg Sports Traumatol Arthrosc.* 2013;21(9):2126-2130.
- •Haklar U, Kocaoglu B, Nalbantoglu U, Aydin AT. Arthroscopic repair of radial lateral meniscus tear by double horizontal sutures with inside-outside technique. *Knee*. 2008;15(5):355-359.
- •Tao SS, Beach WR. Use of a Caspari suture punch to repair a radial tear of the lateral meniscus. *Arthroscopy.* 2002;18(2):206-210.
- •Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: Osteoarthritis. *Am J Sports Med.* 2007;35(10):1756-1769.

