Comparing Restricted Inverse Kinematic Alignment to Restricted Kinematic Alignment

Presenter: Mr Edward O'Bryan MBBS (Hons) FRACS FAOrthA

- Monash University, Australia

Senior Author: Prof Timothy Whitehead MBBS, FRACS, FAOrthA

- OSVi, Australia

Dr Christopher Plaskos PhD

- Corin, USA

Dr Alexander Orsi PhD

- Corin, USA

Disclosures

EO'B

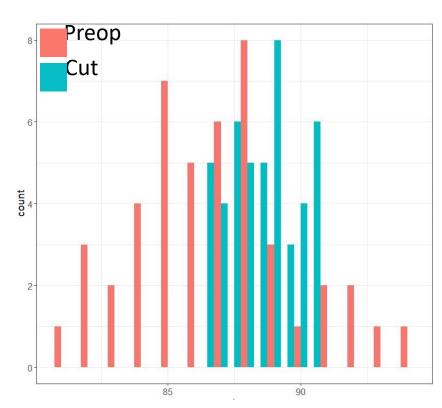
No disclosures

TW

- Consultant for Medacta, Corin
- Royalties for Medacta, Corin
- Smith & Nephew APAC Board Member
- Shareholder in OSVi

Background

- Numerous alignment philosophies used in contemporary total knee arthroplasty^(1,2,3)
- Current focus on achieving coronal balance while respecting constitutional alignment and joint line obliquity⁽⁴⁾
- Limits to degree of deviation from mechanical axis generally adopted^(5,6)


Objectives

- To compare restricted inverse kinematic alignment (riKA) and restricted kinematic alignment (rKA) regarding:
- Joint laxity
- Coronal balance (lateral-medial laxity where 0=balanced)
- Frequency of tibial recut rate for extension balance within 2mm
- CPAK restoration

Cohort

- 50 consecutive Apex TKR using the Balancebot
- 4 exclusions (missing data)
- riKA philosophy executed
- Retrospective virtual rKA balancing from dataset

Method – riKA Surgical Technique

Ligament tension assessed with Omnibot

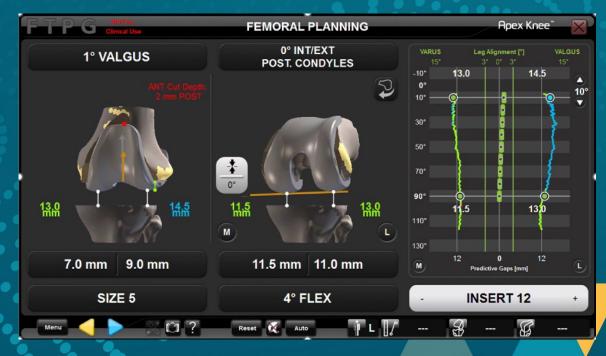
- Tibial cut planned from pre-operative X-ray to restore native MTPA
 - Within boundaries of 1° valgus to 3° varus

- Femoral component positioned using predictive-balancing software
- Positioned to achieve equal extension gaps allowing some lateral flexion laxity

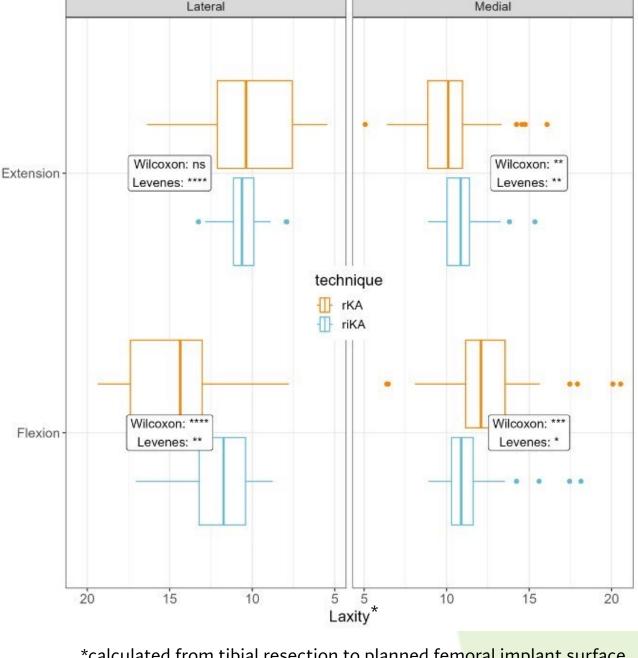
Method – Restrospective rKA Simulation

- Post-hoc rKA simulation on software using wear levels recorded from pre-operative radiographs
- Tibial resections identical to riKA cases
- •Femoral resections simulated to restore native joint line
- Neutral rotation of femoral components
- •Laxity for rKA calculated by subtracting resection differences from riKA gap data

Example: 4 Degree Varus Knee



Resection Differences

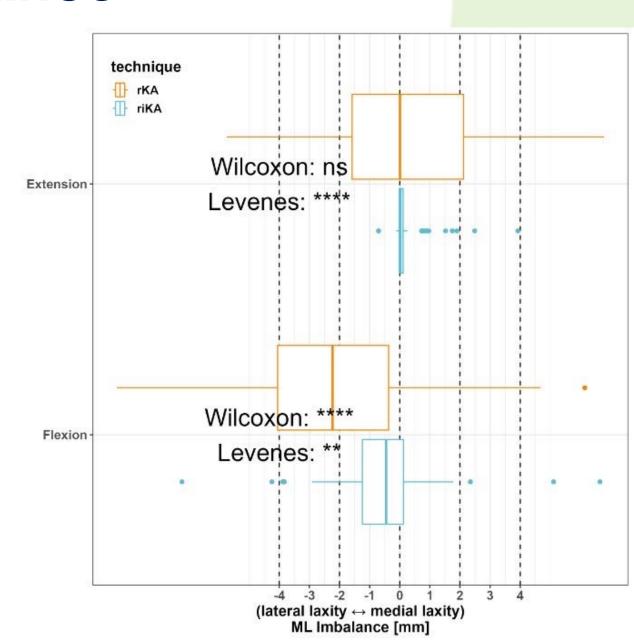

Resection		riKA	rKA
Tibia (Validated)	Lateral	9.3±1.4	
	Medial	7.9±1.8	
Distal Femur (Planned)	Lateral	8.6±2	8.1±0.9
	Medial	8.1±1.8	7.2±0.6
Posterior Femur (Planned)	Lateral	8.3±2.2	11±0
	Medial	9.8±2.1	11±0

- Achieved tibial resection used for both models 1.5 varus +/1.3deg
- rKA resected less distal femur medially and laterally
- •rKA resected more posteriorly and iKA tended toward femoral ER (M>L resections)

Results: Joint Laxity

Laxity (mm)	Lateral		Medial	
Alignment	riKA	rKA	riKA	rKA
Extension	10.6±1.1	10.1±2.7	10.9±1.2	10.0±2.3
Flexion	11.9±1.9	14.6±3.3	11.3±1.9	12.5±2.9

- riKA laxity most reliable in all quadrants
- •rKA tighter medially in extension than riKA
- •rKA delivers looser flexion gap, with greater variability

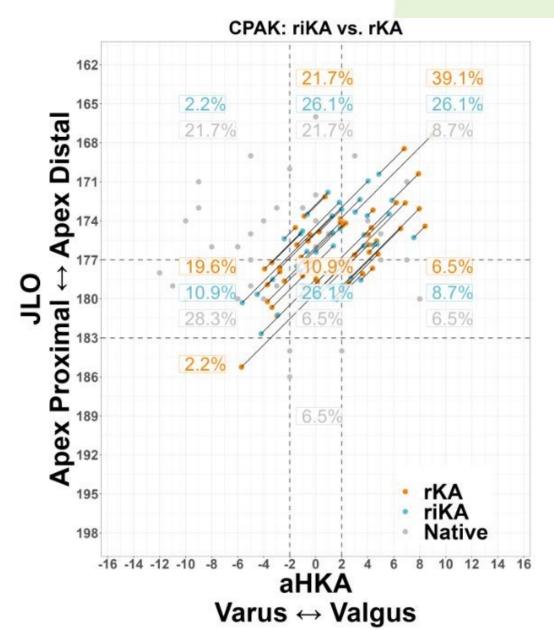


*calculated from tibial resection to planned femoral implant surface

Results: Coronal Balance

Balance	riKA	rKA
Extension	0.3±0.8	0.0±2.9
Flexion	-0.6±2.2	-2.1±3.2

- •riKA more reliable in extension
- No difference in mean values
- More rKA patients had coronal extension imbalance
 - •>1 mm: **67% vs 11%**, p<0.0001
 - •>2 mm: **48% vs 4%,** p<0.0001


Results: Tibial Re-cuts and CPAK Restoration

Tibial Re-Cut	riKA	rKA
Recut for balance <2 mm	2/46	22/46
Recut >3° varus	0/2	7/22
Recut >5° varus	0/2	1/22
Recut >3° valgus	0/2	1/22

Frequent tibial recut to balance rKA

Majority of riKA resulted in CPAK 2 and 5

39.1% of rKA knees resulted in CPAK 3

Conclusions & Limitations

- riKA had the most reproducible joint laxity & balance
- ~50% of rKA cases required tibial recut to achieve ML balance <2 mm
- Surgical technique affects laxity and balance (tibia versus femur first)
- Objective intra-operative assessment with predictive balancing achieves desired laxity & balance within tight resection boundaries
- Wear recorded radiographically post-hoc
- All rKA femurs neutrally rotated, due to lack of posterior wear data
- Femoral resections without boundary versus tibial resections with boundaries
- Small numbers

References

- 1. Segura-Nuez J, Martín-Hernández C, Segura-Nuez JC, Segura-Mata JC. Methods of alignment in total knee arthroplasty, systematic review. *Orthopedic Reviews*. 2024;16. doi:10.52965/001c.1177692
- 2. MacDessi SJ, Oussedik S, Abdel MP, Victor J, Pagnano MW, Haddad FS. The language of knee alignment: updated definitions and considerations for reporting outcomes in total knee arthroplasty. *Bone Joint J.* 2023;105-B(2):102-108. doi:10.1302/0301-620X.105B2.BJJ-2022-13453
- 3. de Grave W, Kellens J, Luyckx T, et al. Inverse Kinematic Alignment for Total Knee Arthroplasty. *Orthopaedics & Traumatology:* Surgery & Research. 2022; 108(5): 103305.
- 4. MacDessi SJ, Griffiths-Jones W, Harris IA, Bellemans J, Chen DB. Coronal Plane Alignment of the Knee (CPAK) classification. *Bone Joint J.* 2021;103-B(2):329-337. doi:10.1302/0301-620X.103B2.BJJ-2020-1050.R14
- 5. MacDessi SJ, Griffiths-Jones W, Chen DB, et al. Restoring the constitutional alignment with a restrictive kinematic protocol improves quantitative soft-tissue balance in total knee arthroplasty: a randomized controlled trial. *Bone Joint J.* 2020;102-B(1):117-124. doi:10.1302/0301-620X.102B1.BJJ-2019-0674.R26
- 6. Tibbo ME, Limberg AK, Perry KI, Pagnano MW, Stuart MJ, Hanssen AD, Abdel MP (2021) Effect of coronal alignment on 10-year survivorship of a single contemporary total knee arthroplasty. J Clin Med 10(1),142.

