

3D-PASS

(3D Patellar instability Anatomical Severity Score)

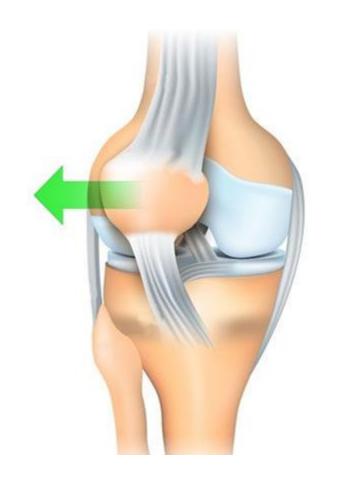
A novel metric using machine learning to predict treatment outcome in patellar instability using a subset of data in the JUPITER cohort

Marissa Sinopoli, Anthony Gatti, Christian Wright, Anna Bartsch, Matthew Veerkamp, Akshay Chaudhari, Beth Shubin Stein, Shital Parikh, Kevin Shea, Scott Delp, **Seth Sherman**, and The JUPITER Group

Disclosures

- AAG reports equity ownership of NeuralSeg Ltd., NodeAI Diagnostics, and GeminiOV LLC
- BESS earns royalties from and is a paid consultant and presenter to Arthrex; is a paid consultant to ConMed; serves on the editorial board of Orthopedics Today; and serves on the publishing board of AJSM
- SNP is a paid consultant for CONMED Linvatec and Pfizer; receives royalties from Wolters Kluwer Health Lippincott Williams & Wilkins; is on the editorial or governing boards of Journal of Pediatric Orthopedics and Orthopedics Today; and is a Board of Directors member for AAOS.
- KGS serves on the editorial board of and has received stock options from nView, Inc; Sarcio, Inc; and Medeloop, Inc; and in the past has received educational payments and research funding from from Arthrex, Biomarin, Evolution Surgical, Styrker, and Vericel Research
- ASC provides consulting services to Chondrometrics GmbH, Patient Square Capital and Elucid Bioimaging unrelated to the content of this work; has
 equity ownership in Brian Key, Subtle Medical, and LVIS Corp
- SLS holds committee positions for AANA, AAOS, ACLSG, AOSSM, Biologic Association, ICRS, and ISAKOS; is on the editorial board for the Arthroscopy Journal, Cur Rev Musc Med, and VJSM; is a course chair of ISMF and the PFF Masters Course and a member of the AO Sports Medicine Taskforce; is a paid educational consultant for Arthrex, Kinamed, and LifeNet; is a paid advisory board member for Ostesys, Reparel, Sarcio, Sparta Medical, Vericel, and Vivorte; is on design teams and receives royalties from ConMed and DJO; holds stock options for LinkX, Ostesys, Moximed, Sarcio, Reparel, and Vivorte; and receives research support from JRF, Smith & Nephew, Octane Biotherapeutics, University of Pittsburg, Miach Orthopaedics Inc., and Organogenesis Inc.

All relevant financial disclosures have been mitigated.

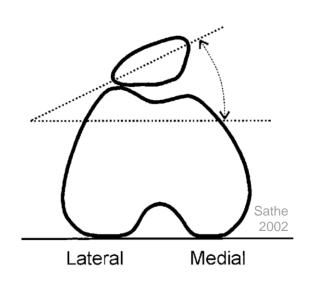


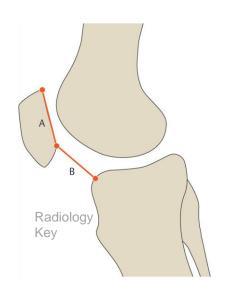
Patellar instability outcomes vary

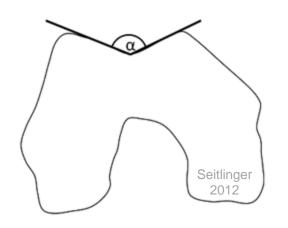
Among non-operative patients:

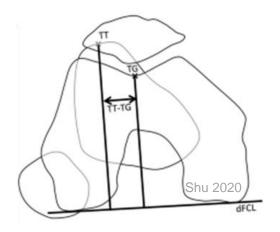
- 1/3 re-dislocate¹
- 58% experience activity limitations after 6 months²

Accurate prediction of outcomes could enhance personalized interventions






Treatment decisions rely on 2D imaging measures


patellar tilt

patellar height e.g., Caton-Deschamps index trochlear dysplasia e.g., sulcus angle tibial tubercletrochlear groove distance

While informative, these 2D imaging measures do not fully leverage 3D MRI bone data

Aim: Develop an anatomical score of patellar instability severity

3D Patellar instability Anatomical Severity Score (3D-PASS)

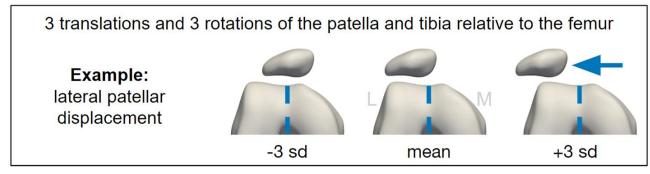
- Associated with instability history
- Associated with post-treatment patient-reported outcomes

Participants

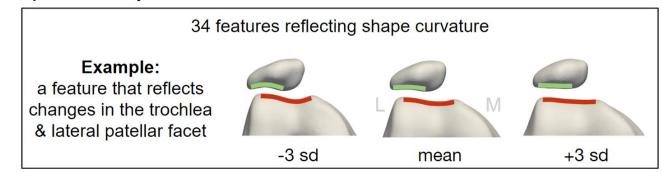
- Retrospective analysis
- 272 patients with patellar instability
 - Subset of the JUPITER (Justifying Patellar Instability Treatment by Results) cohort
 - First-time and recurrent
 - Non-operative and operative
- 26 age-matched ACL-injured controls

Measures

- Imaging at enrollment baseline
 - Patellar tilt
 - Caton-Deschamps Index (CDI)
 - Sulcus angle
 - TT-TG distance
- Patient-reported outcomes at baseline and 1-year follow-up
 - Kujala Anterior Knee Pain Scale (Kujala)
 - Banff Patellofemoral Instability Instrument 2.0 (BPII)



From 3D PD-weighted MRIs, we developed a statistical knee model³ to quantify 3D relative bone positions and bone shape

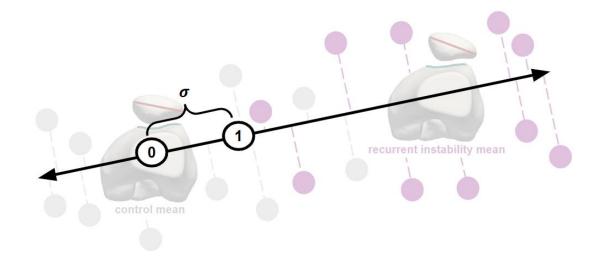

- A statistical knee model describes major modes of variation in relative bone translations, rotations, and shape curvature
- One example relative bone position feature and one example bone shape feature are depicted at right

a) relative bone positions

UNPUBLISHED DATA - DO NOT COPY OR DISTRIBUTE

b) bone shape

Using these features, we developed instability severity scores to reflect differences between control and recurrent instability cohort means


Four scores of instability severity

1. 2D imaging measures

2. 3D relative bone positions

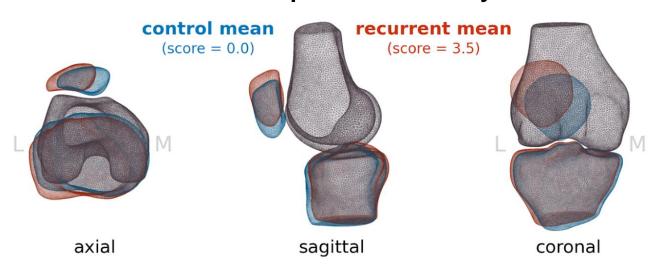
3. 3D bone shape

4. 3D relative bone positions& bone shape

Developed such that:

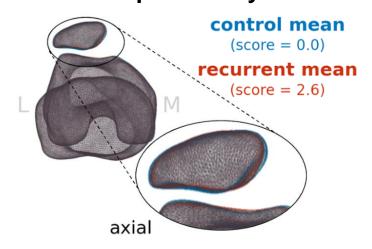
- Score of 0 corresponds to mean control
- 1 unit corresponds to 1 control standard deviation
- Higher score corresponds to recurrent instability

complexity



Instability severity position and shape score visualizations

UNPUBLISHED DATA - DO NOT COPY OR DISTRIBUTE


3D relative bone positions severity score

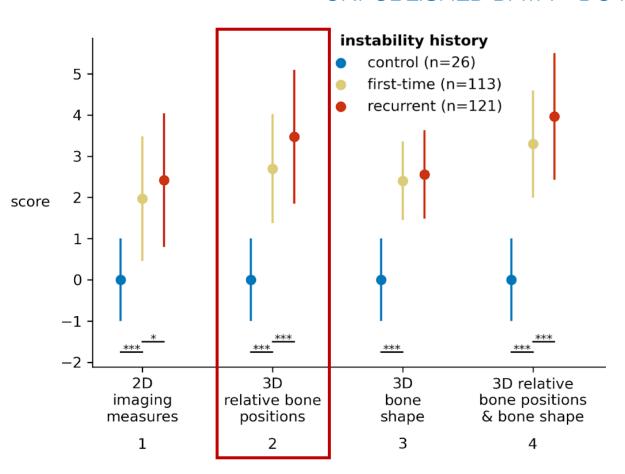
Recurrent instability was associated with large differences:

- Greater patellar tilt, height, and lateral displacement
- More external rotation of the tibia relative to the femur
- More knee valgus

3D bone shape severity score

Recurrent instability was associated with slight differences:

- Greater trochlear dysplasia
- Greater lateral patellar facet concavity
- A more medial trochlear groove
- Less patellar width



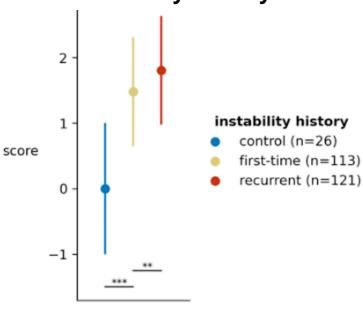
3D relative bone positions best distinguished between first-time and recurrent instability cohorts

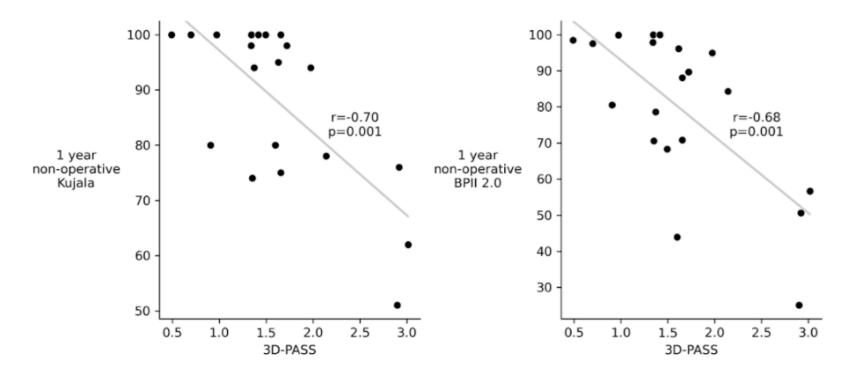
UNPUBLISHED DATA - DO NOT COPY OR DISTRIBUTE

- All four scores increased with recurrence
 - The 3D relative bone positions score best distinguished between the first-time and recurrent instability cohorts
- The 3D relative bone positions score was the only score to correlate with one-year non-operative patient-reported outcomes:

•
$$r_{Kujala} = -0.42$$

$$r_{BPII} = -0.49$$




3D-PASS was developed using a subset of the 3D bone relative bone positions that maximized correlations with patient-reported outcomes

UNPUBLISHED DATA - DO NOT COPY OR DISTRIBUTE

3D-PASS is associated with instability history

3D-PASS is strongly correlated with patient-reported outcomes

3D-PASS

Score) Summary: 3D-PASS (3D Patellar instability Anatomical Severity

- Novel metric using machine learning associated with:
 - Instability history
 - One-year non-operative patient-reported outcomes
- Can be computed automatically from CTs & MRIs
- Demonstrates that 3D relative bone positions are more important than 3D bone shape
- Provides potential to help identify patients at risk of poor outcomes and guide earlier surgical intervention to improve prognosis

Acknowledgements

This work was funded by:

- The American Orthopaedic Society for Sports Medicine
- The Arthroscopy Association of North America
- The Canadian Institutes of Health Research Postdoctoral Fellowship
- CONMED
- The National Institutes of Health (P41EB027060, R01 AR077604, R01 EB002524, R01 AR079431)
- The Pediatric Orthopaedic Society of North America
- Stanford Data Science
- Stanford University
- The University of Cincinnati
- The Wu Tsai Human Performance Alliance

References

- 1. Dixit 2017. 10.1097/JSA.0000000000000149
- 2. Atkin 2000. 10.1177/03635465000280040601
- 3. Cootes 1999. 10.1093/oso/9780199637010.003.0007

Contact

Marissa Lee Sinopoli, PhD msinopoli@hmc.edu

Seth Sherman, MD shermans@stanford.edu

