

Osteochondritis Dissecans of the Talus: Composite Cancellous Bone and Morselized Allograft Cartilage Grafting

Patrick O. Ojeaga, MD; Nolan D. Hawkins, BS; Terrul Ratcliff, MD; Rishi Sinha, BA;

Ben Johnson, PA-C, ATC; Chuck Wyatt, MS, CPNP; Henry B. Ellis, MD; Philip L. Wilson, MD

Disclosures

The following relationships exist:

- Philip L. Wilson, M.D.
 - Educational Support Plyant Medical
 - Grants Paid to Institution Pediatric Orthopedic Society of North America (POSNA);
 Arthroscopy Association of North America (AANA)
 - Royalties Elsevier
- Henry B. Ellis, M.D.
 - Paid Speaker OrthoPediatrics
 - Unpaid Consultant Smith & Nephew
 - Non-Financial Educational Support Smith & Nephew; Arthrex, Inc.
 - Educational Support Plyant Medical
 - Grants Paid to Institution Pediatric Othopaedic Society of North America (POSNA); American Orthopaedic Society of Sports Medicine (AOSSM); United States Department of Defense; Washington University St. Louis
 - Board/Committee Positions Texas Orthopaedic Association (TOA), American Academy of Orthopaedic Surgeons (AAOS), Pediatric Research in Sports Medicine (PRiSM)
- Educational Funding
 - Arthrex
 - Stryker

BACKGROUND

- Osteochondral Lesions Talus (OLT) has been variously described
 - Lateral Traumatic/Shallow
 - Medial Osteochondritis/Larger & Deeper

controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation

Osteochondral lesions of the talus: randomized

Randomized Controlled Trial > Arthroscopy. 2006 Oct;22(10):1085-92.

doi: 10.1016/j.arthro.2006.05.016.

Alberto Gobbi ¹, Ramces A Francisco, James H Lubowitz, Francesco Allegra, Gianluigi Canata

- Gobbi et al. conducted a level II randomized trial for OLTs and found no difference in outcomes
 - Chondroplasty/MFX/OATS
 - Average age 30yr.; 2/3 Lateral lesions
- International consensus statement
 - Debridement and Marrow Stimulation is the recommended treatment for Talar OLT

Practice Guideline > Foot Ankle Int. 2018 Jul;39(1_suppl):16S-22S. doi: 10.1177/1071100718779392.

Debridement, Curettage, and Bone Marrow Stimulation: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle

Charles P Hannon ¹, Steve Bayer ², Christopher D Murawski ², Gian Luigi Canata ³, Thomas O Clanton ⁴, Daniel Haverkamp ⁵, Jin Woo Lee ⁶, Martin J O'Malley ⁷, Hua Yinghui ⁸, James W Stone ⁹; International Consensus Group on Cartilage Repair of the Ankle

BACKGROUND

- Cystic lesions were found to have worse outcomes at a minimum 2-year follow-up.
 Therefore, may be better suited for bone grafting or cartilage replacement
 - Area more 90.91 mm²
 - Depth greater than 7.56 mm
 - Volume beyond 428.13 mm³
- Optimal Treatment TALUS OCD Unclear
- No American Academy of Orthopedic Surgeons (AAOS) Clinical Practice Guide (CPG) for treatment of Talar OCD

> Arthroscopy, 2023 Oct;39(10):2191-2199.e1. doi: 10.1016/j.arthro.2023.03.029. Epub 2023 Apr 25.

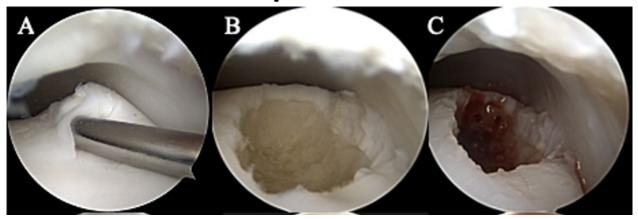
Concomitant Subchondral Bone Cysts Negatively Affect Clinical Outcomes Following Arthroscopic Bone Marrow Stimulation for Osteochondral Lesions of the Talus

Xiangyun Cheng ¹, Tong Su ¹, Xiaoze Fan ¹, Yuelin Hu ¹, Chen Jiao ¹, Qinwei Guo ¹, Dong Jiang ²

PURPOSE

To evaluate patient-reported outcome (PRO) and magnetic resonance imaging (MRI) results following arthroscopic layered cancellous autograft bone and morselized allograft cartilage grafting for OCD of the talus.

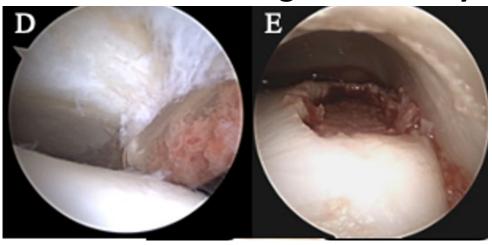
METHODS


- IRB-Approved retrospective review
- Single tertiary pediatric sports medicine and orthopedic center
 - 2 surgeons
- Consecutive patients treated for OCD of the talus
 - Jan 2015 Oct 2022
 - Indicated for symptomatic, unstable lesions
 - Minimum one year follow up
- Demographic and operative data
- MRI
 - Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) 2.0 score was employed to assess postoperative MRIs.
- Prospectively collected PRO at pre- and postoperative
 - Foot and Ankle Outcome Score (FAOS)

MOCART 2	.0 Scoring System	ъ.
		Poin
Variable 1	Volume fill of cartilage defect	
	Complete filling OR minor hypertrophy: 100% to 150% filling of total defect volume	20
	Major hypertrophy ≥150% OR 75% to 99% filling of total defect volume	15
	50% to 74% filling of total defect volume	10
	25% to 49% filling of total defect volume	5
	<25% filling of total defect volume OR complete delamination in situ	0
Variable 2	Integration into adjacent cartilage	
	Complete integration	15
	Split-like defect at repair tissue and native cartilage interface ≤2 mm	10
	Defect at repair tissue and native cartilage interface >2 mm, but <0% of repair tissue length	5
	Defect at repair tissue and native cartilage interface ≥50% of repair tissue length	0
Variable 3	Surface of the repair tissue	
	Surface intact	10
	Surface irregular <50% of repair tissue diameter	5
	Surface irregular ≥50% of repair tissue diameter	0
Variable 4	Structure of the repair tissue	
	Homogeneous	10
	Inhomogeneous	0
Variable 5	Signal intensity of the repair tissue	
	Normal	15
	Minor abnormal—minor hyperintense OR minor hypointense	10
	Severely abnormal—almost fluid like OR close to subchondral plate signal	0
Variable 6	Bony defect or bony overgrowth	
	No bony defect or bony overgrowth	10
	Bony defect: depth < thickness of adjacent cartilage OR overgrowth <50% of adjacent cartilage	5
	Bony defect: depth ≥ thickness of adjacent cartilage OR overgrowth ≥50% of adjacent cartilage	0
Variable 7	Subchondral changes	
	No major subchondral changes	20
	Minor edema-like marrow signal—maximum diameter <50% of repair tissue diameter	15
	Severe edema-like marrow signal—maximum diameter ≥50% of repair tissue diameter	10
	Subchondral cyst ≥5 mm in longest diameter OR osteonecrosis-like signal	0

SURGICAL PROCEDURE

1. Arthroscopic Debridement



3. Morselized Allograft Cartilage Grafting

(BioCartilage®; Arthrex, Naples, FL)

2. Cancellous Autograft Delivery

Post-Operative Protocol

- Non-Weightbearing for 6-8 weeks with ROM at 2 weeks
- Progressive weightbearing & concentric strengthening at 6-8 weeks
- Impact and running at 4-6 months

RESULTS

- 20 ankles in 18 patients
 - 14.5 years (10.8-17.9)
 - 61.1% female

• 2 year follow up (1.5 - 4.2 years)

Lesion Characteristics						
Coronal Width	8.2 ± 1.7 (range, 4.6-11.3)					
Sagittal Length	12.8 ± 3.7 (range, 4.4-19.3)					
Depth	5.7 ± 1.7 (range, 2.4-9.1)					
Lesion Location						
Medial Shoulder	16 (84.2)					
Lateral Shoulder	2 (10.5)					
Central	1 (5.3)					
Cancellous Bone in Progeny						
Yes	13 (68.4)					
No	6 (31.6)					
Subchondral Cysts						
Yes	6 (31.6)					
No	13 (68.4)					
Edema						
Yes	19 (100)					
No	0 (0)					

RESULTS

MRI Characteristics

- All demonstrated stable lesion filling with incorporated bony elements below the augmented fibrocartilage surface
- MOCART scores ≠ patient reported outcomes (p > 0.05)

Postoperative MRI						
Post-op Timing (months)	8.3 ± 4.9 (range, 3.7-23.8)					
Total MOCART 2.0 Score	66.7 ± 15.0 (range, 40-90)					
Categorical MOCART 2.0 Scoring						
Volume Fill	19.3 ± 1.8 (range, 15-20)					
Integration	13.0 ± 2.5 (range, 10-15)					
Surface	5.3 ± 4.0 (range, 0-10)					
Structure	4.0 ± 5.1 (range, 0-10)					
Signal Intensity	9.3 ± 2.6 (range, 0-15)					
Bony Defect	5.0 ± 5.0 (range, 0-10)					
Subchondral Changes	10.7 ± 4.2 (range, 0-20)					

RESULTS

Return to Sport

 81% of patients returned to sport 8.5 ± 2.96 months

 No re-operations for graft failure or instability

Foot and Ankle Outcome Scores

Domain	Pre- operative	Final Post- operative	% Increase	p-value
ADLs	68.21	94.21	38.1	< 0.001
Pain	57.87	89.58	54.8	<0.001
Quality of Life	25.69	60.55	135.6	<0.001
Sports& Recreation	38.05	76.25	100.4	<0.001
Symptoms	63.29	80.80	27.7	<0.01

CONCLUSION

- Composite grafting technique is an effective strategy for addressing both the osseous and chondral components of the OCD Talus defect with minimal morbidity.
- MRI shows stable, near complete lesion fill, with appropriate fibrocartilage contour.
- Significant improvement in PROs and high rates of return to sport were achieved following composite grafting to treat talar OCD in adolescent athletes.

SCOTTISH RITE FOR CHILDREND SPORTS MEDICINE

scottishriteforchildren.org

@ScottishRiteforChildren

@SRChildren_

@SRChildren_

References

- 1. Edmonds EW, Polousky J. A review of knowledge in osteochondritis dissecans: 123 years of minimal evolution from Konig to the ROCK study group. Clin Orthop Relat Res. 2013;471(4):1118-1126.
- 2. Green WT, Banks HH. Osteochondritis dissecans in children. J Bone Joint Surg Am. 1953;35-A(1):26-47; passim.
- 3. König. Ueber freie Körper in den Gelenken. Deutsche Zeitschrift für Chirurgie. 1888;27:90-109.
- 4. Bruns J, Habermann C, Werner M. Osteochondral Lesions of the Talus: A Review on Talus Osteochondral Injuries, Including Osteochondritis Dissecans. Cartilage. 2021;13(1 suppl):1380S-1401S.
- 5. Ghahremani S, Griggs R, Hall T, Motamedi K, Boechat MI. Osteochondral lesions in pediatric and adolescent patients. Semin Musculoskelet Radiol. 2014;18(5):505-512.
- 6. Letts M, Davidson D, Ahmer A. Osteochondritis dissecans of the talus in children. J Pediatr Orthop. 2003;23(5):617-625.
- 7. Johnson MA, Park K, Talwar D, Maguire KJ, Lawrence JTR. Predicting Outcomes of Talar Osteochondritis Dissecans Lesions in Children. Orthop J Sports Med. 2021;9(11):23259671211051769.
- 8. Masguijo JJ, Allende F, Carabajal M. Ankle Morphology and Juvenile Osteochondritis Dissecans (JOCD) of the Talus: Is There an Association? An MRI Study. J Pediatr Orthop. 2021;41(2):e147-e152.
- 9. Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am. 1959;41-A:988-1020.
- 10. Kay RM, Tang CW. Pediatric foot fractures: evaluation and treatment. J Am Acad Orthop Surg. 2001;9(5):308-319.
- 11. Lahm A, Erggelet C, Steinwachs M, Reichelt A. Arthroscopic management of osteochondral lesions of the talus: results of drilling and usefulness of magnetic resonance imaging before and after treatment. Arthroscopy. 2000;16(3):299-304.
- 12. Marlovits S, Striessnig G, Resinger CT, et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. European journal of radiology. 2004;52(3):310-319.
- 13. Obey MR, Hillen TJ, Broughton JS, Smith MV, Goldfarb CA. Magnetic Resonance Imaging Assessment of Cartilage Appearance Following Marrow Stimulation of Osteochondritis Dissecans of the Humeral Capitellum. J Hand Surg Am. 2023;48(4):409 e401-409 e411.
- 14. Chambers HG, Shea KG, Anderson AF, et al. Diagnosis and treatment of osteochondritis dissecans. J Am Acad Orthop Surg. 2011;19(5):297-306.
- 15. Schreiner MM, Raudner M, Marlovits S, et al. The MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) 2.0 Knee Score and Atlas. Cartilage. 2021;13(1_suppl):571S-587S.
- 16. Espinoza C, Ellis HB, Wilson P. Arthroscopic delivery of cancellous tibial autograft for unstable osteochondral lesions in the adolescent knee. Arthrosc Tech. 2014;3(3):e339-342.
- 17. Azam MT, Yu K, Butler J, et al. Validation of the Foot and Ankle Outcome Score (FAOS) for Osteochondral Lesions of the Ankle. Foot Ankle Int. 2023;44(8):745-753.
- 18. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee Injury and Osteoarthritis Outcome Score (KOOS)--development of a self-administered outcome measure. J Orthop Sports Phys Ther. 1998;28(2):88-96.
- Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy. 2006;22(10):1085-1092.
- 20. Casari FA, Germann C, Weigelt L, Wirth S, Viehofer A, Ackermann J. The Role of Magnetic Resonance Imaging in Autologous Matrix-Induced Chondrogenesis for Osteochondral Lesions of the Talus: Analyzing MOCART 1 and 2.0. Cartilage. 2021;13(1 suppl):639S-645S.
- 21. Valderrabano V, Miska M, Leumann A, Wiewiorski M. Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med. 2013;41(3):519-527.
- 22. Gottschalk O, Altenberger S, Baumbach S, et al. Functional Medium-Term Results After Autologous Matrix-Induced Chondrogenesis for Osteochondral Lesions of the Talus: A 5-Year Prospective Cohort Study. J Foot Ankle Surg. 2017;56(5):930-936.