Females Are More Likely To Undergo Revision Surgery After Proximal Hamstring Avulsion Repair

Ross Radic, MBBS FRACS (Ortho) FAOrthA^{1,3,5}; Jay R. Ebert, PhD^{1,2,3}; Antony Liddell FRACS (Orth), FAOrthA^{3,5}; Peter Edwards, PhD⁴; Method Kabelitz, FRACS (Orth)⁵

¹ School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Western Australia.

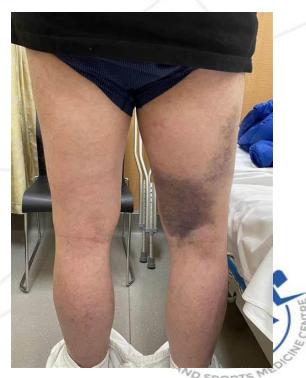
² HFRC Rehabilitation Clinic, Perth, Western Australia.

³ Perth Orthopaedic & Sports Medicine Research Institute, Perth, Western Australia.

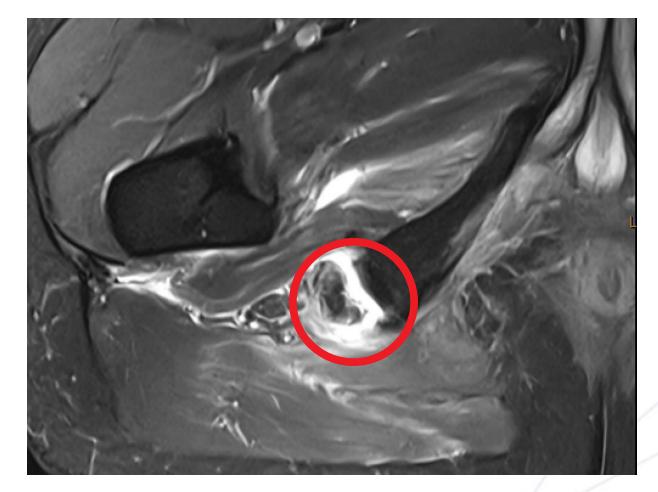
⁴ School of Allied Health, Curtin University, Perth, Western Australia.

⁵ Perth Orthopaedic & Sports Medicine Centre, Perth, Western Australia.

Faculty Disclosure Information

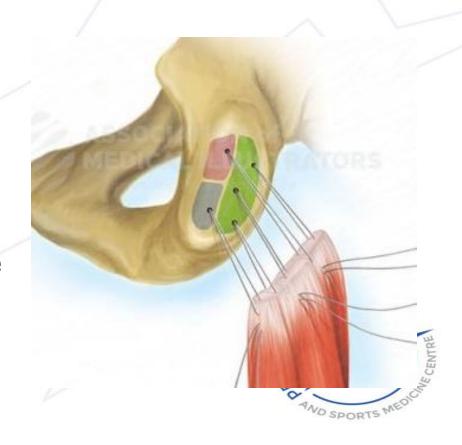

- Ross Radic
 - Consultancy: Arthrex, Smith and Nephew, Zimmer
 Biomet, DePuy Synthes, AO Sports
 - Institutional Support: Arthrex, Smith and Nephew
 - Paid Presentations: Arthrex, Corin
 - Holds shares in: Convergence Medical
 - Royalties: nil

Background


- 12% of hamstring injuries reported to be proximal avulsion/ruptures¹
- Surgical repair of acute tears improve patient satisfaction, muscle strength and return to sports rate^{2,3}
- 1.2 2.7% re-rupture rate ^{2,4}
- Remaining ambiguity of associative patient-related factors and re-rupture

Aim

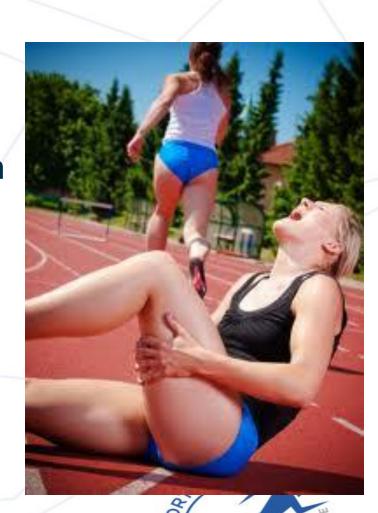
 Identification of associative patient-related factors in acute and chronic repair settings leading to revision surgery two years postoperatively



Materials & Methods

• MRI-approved tears, patients demographics

- Open primary repairs (n = 206, 2/2014 6/2022)
 - Acute rupture (n = 139), chronic tear (minimum 6 weeks post trauma, n = 67)
- Anchor (n = 5)/suture fixation
- Rehab
 - full weight bearing as tolerated, 2 weeks knee brace (30° flexion), unrestricted strengthening after 3 months


Results

Acute repair

	Full Cohort (n=139)	
	No Revision	Revision
n (%)	124 (89.2)	15 (10.8)
Age (years), mean ± SD	48.7 ± 15.5	52.5 ±14.8
BMI, mean ± SD	26.5 ± 4.9	26.9 ± 5.8
Sex, n (%)		
Female	43 (34.7)	10 (66.7)
Male	81 (65.3)	5 (33.3)
Hypertension, n (%)		
No	103 (83.1)	10 (66.7)
Yes	21 (16.9)	5 (33.3)
Hypercholesterolaemia, n (%)		
No	115 (92.7)	14 (93.3)
Yes	9 (7.3)	1 (6.7)

 Mean time to repair 56.4 ± 65.5 days

- Multivariable logistic regression
 - Female gender predictive for revision (OR 4.1,p = 0.026)
 - No further difference in investigated variables

Results

• Chronic repair

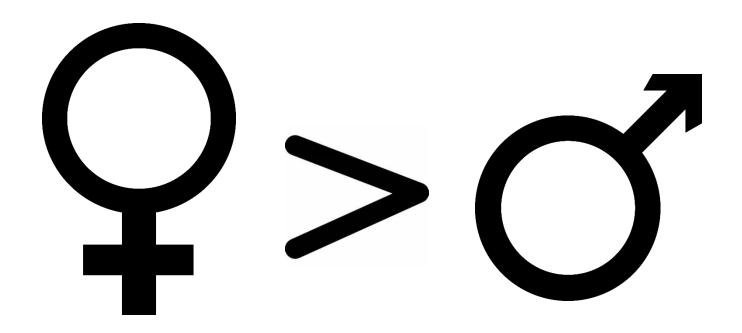
	Full cohort (n=67)	
	No Revision	Revision
n (%)	56 (83.6)	11 (16.4)
Age (years), mean ± SD	61.2 ± 9.6	56.3 ± 7.6
BMI, mean ± SD	26.3 ± 4.4	24.1 ± 4.1
	n	% re-injury
Sex, n (%)		
Female	45 (80.4)	9 (81.8)
Male	11 (19.6)	2 (18.2)
Hypertension, n (%)		
No	41 (73.2)	8 (72.7)
Yes	15 (26.8)	3 (27.3)
Hypercholesterolaemia, n (%)		
No	48 (85.7)	11 (100.0)
Yes	8 (14.3)	0 (0.0)
Type 2 Diabetes Mellitus, n (%)		
No	51 (91.1)	11 (100.0)
Yes	5 (8.9)	0 (0.0)
Smoker, n (%)		
No	56 (100.0)	10 (90.9)
Yes	0 (0.0)	1 (9.1)

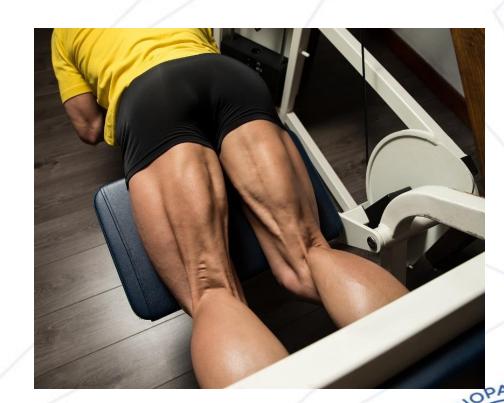
No difference between cohorts

 No predictive factor for revision surgery

Discussion & Limitations

 Female gender quadruples likelihood for re-tear after acute repair


 Overall higher re-rupture rate compared to pooled data of literature^{4,5}


• Retrospective design (predictive variables not collected)

Conclusion

• Beside female gender in acute hamstring ruptures, no further variable was predictive for revision surgery

References

- 1 Koulouris G, Connell D (2003) Evaluation of the hamstring muscle complex following acute injury. Skeletal Radiol 32:582-589
- 2 Bodendorfer BM, Curley AJ, Kotler JA, Ryan JM, Jejurikar NS, Kumar A, Postma WF (2017) Outcomes After Operative and Nonoperative Treatment of Proximal Hamstring Avulsions: A Systematic Review and Meta-analysis. Am J Sports Med 363546517732526
- 3 Bowman EN, Marshall NE, Gerhardt MB, Banffy MB (2019) Predictors of Clinical Outcomes After Proximal Hamstring Repair. Orthop J Sports Med 7:2325967118823712
- 4Harris JD, Griesser MJ, Best TM, Ellis TJ (2011) Treatment of proximal hamstring ruptures a systematic review. Int J Sports Med 32:490-495
- 5 Hillier-Smith R, Paton B (2022) Outcomes following surgical management of proximal hamstring tendon avulsions: a systematic review and meta-analysis. Bone Jt Open 3:415-422

