

Physeal sparing ACL reconstruction has equivalent survivorship and functional outcomes as transphyseal reconstruction but does not prevent growth disturbance: a systematic review of clinical and radiological outcomes

Muaaz Tahir¹, Musab Al-Musabi¹, Tahir Khaleeq¹, Omar Mostafa⁷, Stephen Dalgleish², Amit Meena³, Darren de SA⁴, Peter D'Alessandro⁵, Nicolas Nicolaou⁶, Shahbaz S Malik⁷

¹Birmingham Orthopaedic Training Programme, UK

²Ninewells Hospital, UK

³Shalby Hospital Jaipur

⁴Department of Pediatric Orthopedic Surgery, McMaster University, Canada

⁵Orthopaedic Research Foundation of Western Australia

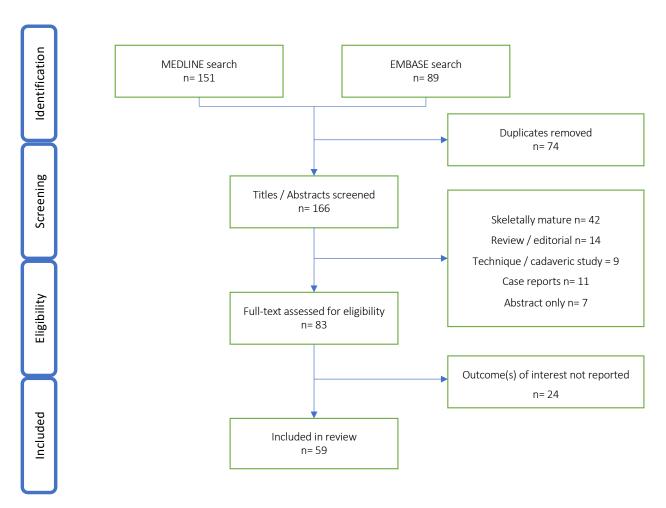
⁶Sheffield Children's Hospital, UK

⁷Worcestershire Acute Hospitals NHS Trust UK

Disclosures / COI

Peter D'Alessandro

- Speaker for Medacta, Smith & Nephew, Arthrex
- Paid Consultant for Smith & Nephew
- Support received from Smith & Nephew, Arthrex
- Board of Directors member for Australian Orthopaedic Association


Background

- Surgical management of ACL deficiency in children is complex due to risk of physis injury and growth disturbance.
- Transphyseal and physis-sparing techniques have good outcomes but there are very few comparative studies.
- This review aimed to compare functional and radiological outcomes of transphyseal (TP) and physis-sparing (PS) techniques.

Methods

- Online databases MEDLINE and Embase were reviewed on 3rd September 2024 according to PRISMA guidelines.
- Clinical studies reporting functional outcomes and/or growth disturbance were included.
 Studies reporting on combined or hybrid/partial TP techniques were excluded.
- Leg length discrepancy (LLD) was defined as >10mm and angular deformity (AD) as >5° difference.
- P-value < 0.05 was considered statistically significant.

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram

Results

Number of studies identified (case series + comparative studies)

Total number of patients (n=)

Mean follow-up

Mean age

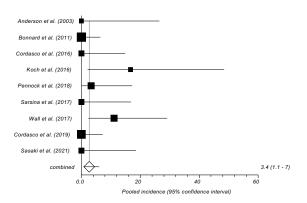
Leg length discrepancy

Angular deformity

Mean Lysholm scores

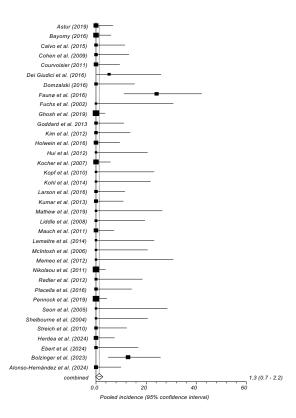
Mean IKDC scores

Graft rupture rate



^{*}Significant difference

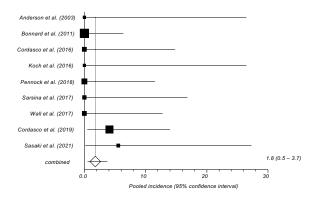
Physeal-sparing reconstruction

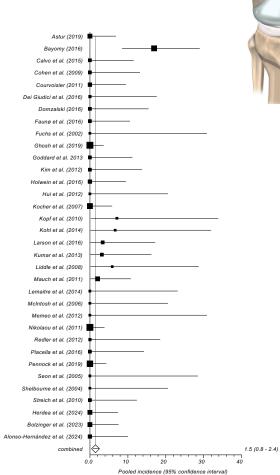


Incidence of Leg Length
Discrepancy (>1cm)

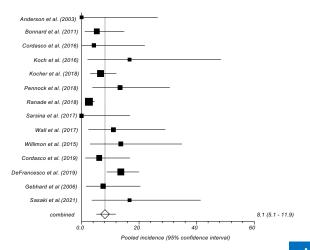
3.4% vs 1.3%

Transphyseal reconstruction

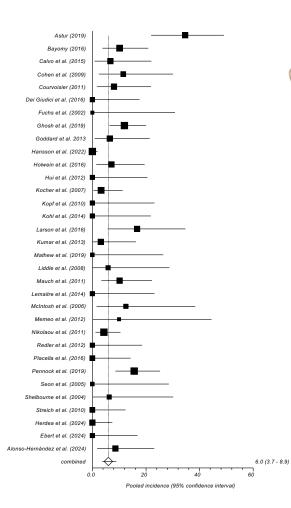



Physeal-sparing reconstruction

Transphyseal reconstruction


Incidence of Angular Deformities

1.8 % vs 1.5%


Physeal-sparing reconstruction

Transphyseal reconstruction

Incidence of graft rupture

8.1 % vs 6%

Conclusions

- Both transphyseal and physeal-sparing reconstruction techniques result in similar patient reported outcomes
- No significant differences in risk of limb-length discrepancy, angular deformity, or graft rupture rates.
- Patients who undergo physeal-sparing reconstruction are generally younger, thus more susceptible to growth-related complications post-surgery.
- Larger comparative studies with age-matched cohorts are required to investigate further.