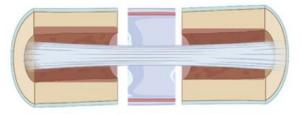
Factors influencing graft remodeling after ACL reconstruction: MRI study of 180 knees

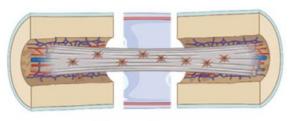
Nicolas Vari (1), Vincent Marot (2), Emilie Berard (1), Etienne Cavaignac (1) The American Journal of Sports
Medicine
The American Journal of Sports
The American Journal o

- (1) Universitary hospital of Toulouse France
- (2) Hospital Nostra Senyora de Meritxell Andorra

Faculty Disclosure Information

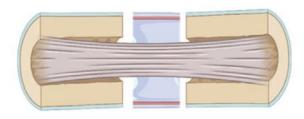
Etienne Cavaignac is paid consultant for Arhtrex, Amplitude, Smith & Nephew and BioBank




Graft incorporation

Early healing phase

Host response: inflammation


Graft response: cell necrosis

Proliferation phase

Host response: angiogenesis

Graft response: cell repopulation

Maturation phase

Host response: tunnel closure

Graft response: matrix remodeling

(different in mid substance and in tunnels)

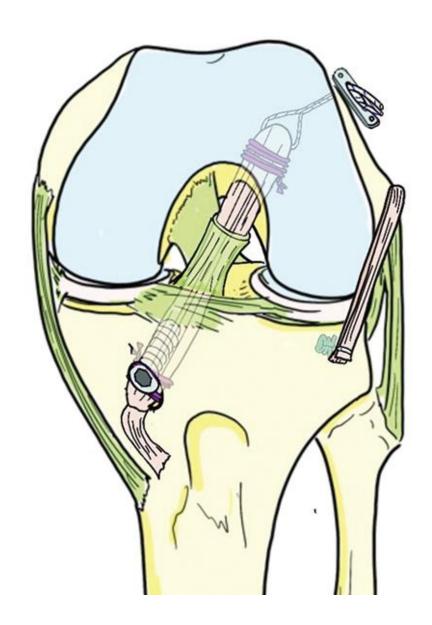
Yao S, Fu BS, Yung PS. **Graft healing after anterior cruciate ligament reconstruction (ACLR)**. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2021

Graft evaluation

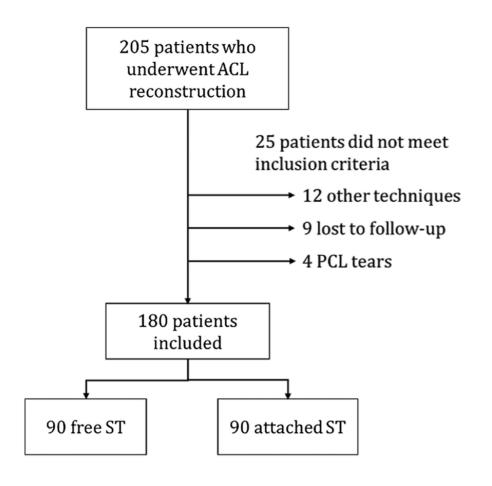
- Clinical exam
 - Lachmann
 - Pivot Shift
- MRI
 - SNQ
 - Howell

Van Dyck et al. Assessment of Anterior Cruciate Ligament Graft Maturity With Conventional Magnetic Resonance Imaging: A Systematic Literature Review. Orthop J Sports Med. 2019

Signal to Noise Quotient


$$SNQ = \frac{(Graft\, signal - PCL\, signal)}{Background\, signal}$$

Weiler et al. Biomechanical Properties and Vascularity of an Anterior Cruciate Ligament Graft can be Predicted by Contrast-Enhanced Magnetic Resonance Imaging: A Two-Year Study in Sheep. Am J Sports Med.



Goals

• To identify exposure factors influencing graft incorporation

Patients and exposure factors

- Sex
- Smoker
- Age
- BMI
- Time from initial injury to surgery
- Time between surgery and return to sport
- Type of sport
- Type of surgery: fST vs aST
- Lateral tenodesis

Patient characteristics

Patient Characteristics^a

	ST Graft			
	$\overline{\text{Free } (n = 90)}$	Attached (n = 90)	All (N = 180)	P Value
Age at surgery, y	27.20 ± 9.37	27.74 ± 8.86	27.47 ± 9.10	.689
Male	52 (57.8)	59 (65.6)	111 (61.7)	.283
Body mass index	23.75 ± 4.15	24.08 ± 3.54	23.91 ± 3.85	.382
Smoker	23 (25.6)	17 (18.9)	40 (22.2)	.282
Time to surgery, wk	26.24 ± 37.85	21.40 ± 24.40	23.82 ± 31.85	.290
Lateral tenodesis	73 (81.1)	46 (51.1)	119 (66.1)	<.0001
Graft diameter, mm	8.64 ± 0.87	9.02 ± 0.73	8.83 ± 0.82	.001
Meniscal lesion				
Medial	13 (14.4)	8 (8.9)	21 (11.7)	.245
Lateral	14 (15.6)	16 (17.8)	30 (16.7)	.689
ALL tear	66 (73.3)	46 (51.1)	112 (62.2)	.002
Preoperative Tegner score b	7.48 ± 2.01	7.59 ± 1.64	7.53 ± 1.83	.684

^aData are presented as mean ± SD or No. (%). ALL, anterolateral ligament; ST, semitendinosus.

^bOut of 10.

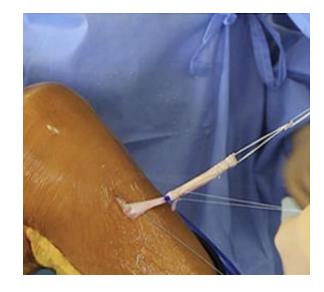
Results *Univariate analysis*

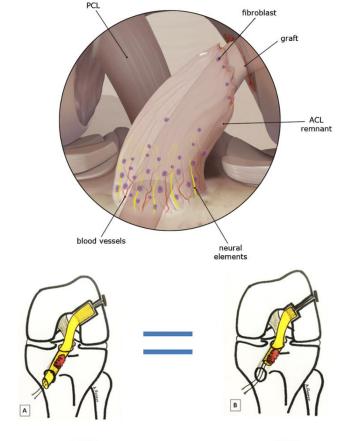
Univariate Analysis of Factors Associated With the SNQ at Postoperative 1 Year^a

		SNQ SD	
Factor	Mean		P Value
Type of graft			<.001
Free semitendinosus	3.91	2.86	
Attached semitendinosus	1.15	1.01	
Lateral tenodesis			<.001
No	2.98	2.64	
Yes	1.65	2.11	

^aQ, quarter; SNQ signal-to-noise quotient.

Results *Multivariate analysis*


Multivariate Analysis of Factors Independently and Significantly Associated With the SNQ^a

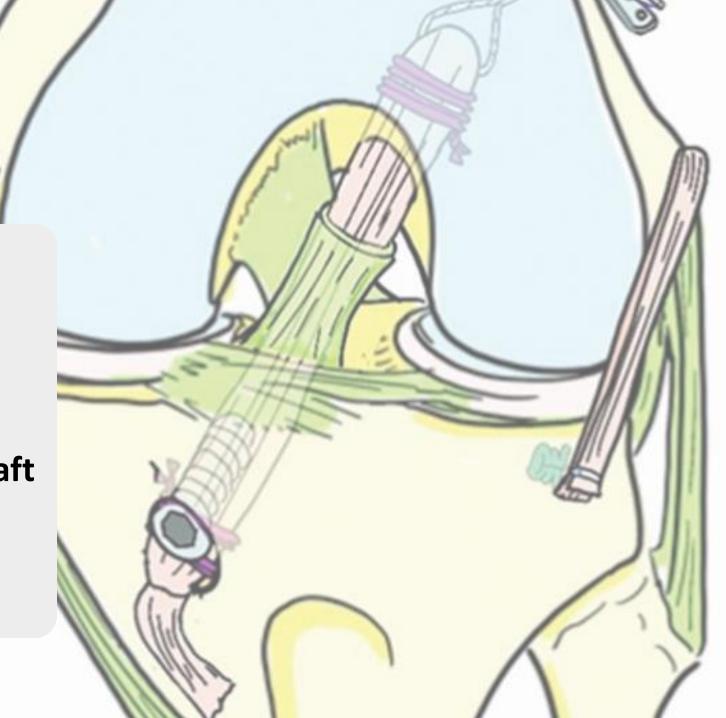

	β Coefficient	P Value	95% CI
Attached ST graft vs free ST	$-2.62 \\ -0.79 \\ -0.71$	<.001	-3.25 to -2.00
Age at surgery: Q3-Q4 vs Q1-Q2		.012	-1.42 to -0.17
Time to surgery: Q2-Q3-Q4 vs Q1		.046	-1.41 to -0.01

^aQ, quartile; SNQ, signal-to-noise quotient; ST, semitendinosus.

Biological aspects of surgery

- Preserving the remnant
- Preserve tibial insertion
- Short tunnel
- Lateral tenodesis

DIDT: **30 mm** DT4: **10 mm**


Remain conservative +++

- Ménétrey et al. « Biological failure » of the anterior cruciate ligament graft. Knee Surg Sports Traumatol Arthrosc Off J ESSKA
- Sonnery-Cottet et al. Anterior Cruciate Ligament Reconstruction and Preservation: The Single—Anteromedial Bundle Biological Augmentation (SAMBBA) Technique. Arthrosc Tech.
- Cavaignac E et al. Hamstring Graft Incorporation According to the Length of the Graft Inside Tunnels. Am J Sports Med.

Conclusion

- Pedicled ST
- Older
- Time to surgery

→ Protective factors for good graft incorporation

References

- Yao S, Fu BS, Yung PS. **Graft healing after anterior cruciate <mark>ligament reconstruction (ACLR)</mark>. Asia Pac J Sports Med
 Arthrosc Rehabil Technol. 2021**
- Van Dyck et al. Assessment of Anterior Cruciate Ligament Graft Maturity With Conventional Magnetic Resonance Imaging: A Systematic Literature Review. Orthop J Sports Med. 2019
- Weiler et al. Biomechanical Properties and Vascularity of an Anterior Cruciate Ligament Graft can be Predicted by Contrast-Enhanced Magnetic Resonance Imaging: A Two-Year Study in Sheep. Am J Sports Med.
- Ménétrey et al. <mark>« Biological failure » of the anterior cruciate ligament graft</mark>. Knee Surg Sports Traumatol Arthrosc Off J ESSKA
- Sonnery-Cottet et al. Anterior Cruciate Ligament Reconstruction and Preservation: The Single-Anteromedial Bundle Biological Augmentation (SAMBBA) Technique. Arthrosc Tech.
- Cavaignac E et al. Hamstring Graft Incorporation According to the Length of the Graft Inside Tunnels. Am J Sports Med.

