Anterior Tibial Subluxation Using Knee Extended Load-Bearing Radiograph Could Predict the Rotational Instability of the Knee

Tsuyoshi Hamada¹, Shotaro Watanabe^{1,5}, Manato Horii¹, Nobuaki Hayashi¹, Yuki Yoshida¹, Yusuke Sato², Yuta Muramatsu³, Ryuichiro Akagi⁴, Ryosuke Nakagawa⁵, Takahisa Sasho^{1,6}

¹Orthopaedic Surgery, Chiba University,

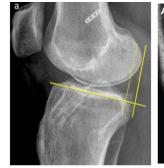
²Orthopaedic Surgery, Eastern Chiba Medical Center,

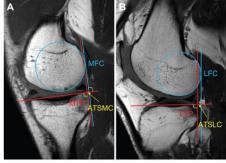
³Orthopaedic Surgery, Kita Chiba Spine & Sports Clinic,

⁴Orthopaedic Surgery, Oyumino central hospital,

⁵Orthopaedic Surgery, National Kohnodai Meidical Centerr,

⁶Center for Preventive Medical Sciences, Musculoskeletal Disease and Pain, Chiba University


Faculty Disclosure Information


I (and my co-authors) have nothing to disclose

Introduction: Evaluation of Anterior Cruciate Ligament (ACL) injury

Anterior Tibial Subluxation (ATS): Evaluating tibial position relative to the femur

	Frequent examination	Cost	Load-bearing		
MRI	difficult	difficult	difficult		
Radiograph	capable	capable	capable		

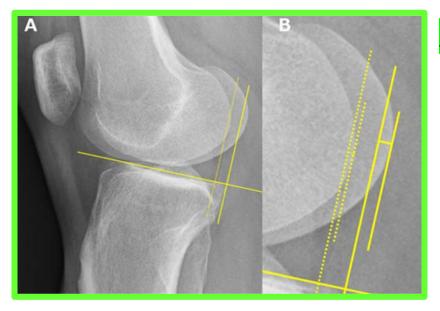
Müller B et al. KSSTA. 2016

Ye Z et al. Am J Sports Med. 2023

- ✓ Knee extended load-bearing Radiograph may be clinically useful.
- ✓ It may be a solution for examiner bias in the Lachman test (Lach) and Pivot shift test (PS)

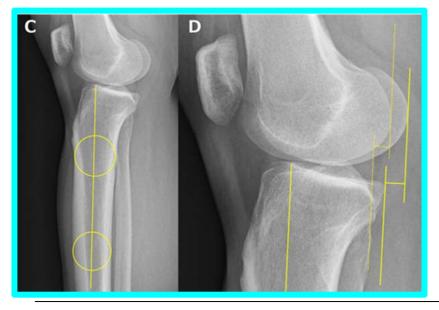
ATS on MRI

Kim S et al. J Orthop. 2021 Hamada T et al. JOA. 2024


- √ Two measurement method using articular surface or bone axis
- ✓ More useful when using the bone axis method, which reduces the influence of PTS Zhang et al KSSTA. 2022

Which method is superior for evaluating ATS on Knee extended load-bearing Radiographs?

Purpose:


Investigate the relationship and utility between knee instabilities and two ATS measurements using knee extended load-bearing Radiographs

Methods: Two ATS measurement methods

Articular Surface ATS (AS-ATS)

- A) Draw a line perpendicular to the medial tibial articular surface and tangent to the posterior margin of the medial and lateral sides of the tibia respectively.
- B) Similarly, a line was drawn tangent to the medial and lateral posterior femoral condyles, and the distance was measured as AS-ATS.

Bone Axis ATS (BA-ATS)

- C) A line through the midpoint of the anteroposterior cortex at 5cm and 15cm from tibial articular surface was defined as the tibial bone axis.
- The tibial bone axis was translated so that it was tangent to the medial and lateral posterior tibial and femoral condyles respectively and the distance was measured as BA-ATS

Patient background

-Chiba LEAF study-Prospective multicenter ACLR cohort study 300 patients (2023-2024)Complex ligament excluded injuries Missing data cases included Patients with radiographs at following timing ✓ Pre ACLR (Pre) √ 3-month postoperatively(3M) 89 cases

Statistical analysis

AS-ATS and BA-ATS

(Lateral, Medial, Midpoint, and Difference ATS)

✓ Intra and Inter-rater reliability

Intra Class Coefficients (ICC)(1.1) and ICC(2.1)**

**Measured twice by two orthopaedic surgeons (over 5 years exprerience)

- ✓ Pre-ATS v.s. 3M-ATS with Paired T test
- ✓ Association with Instabilities (Lach* and PS*)
 - Adjusted with Age, BMI, Time from injury to surgery and PTS using Multi regression analyses
 - Using Pre-ATS

*Evaluated by IKDC grade under Anesthesia Grade B or below: Low grade / Grade C or above: High grade

Significance level of analysis: P-value<0.05

Results:

Patient characteristics

	Average	Standard deviation(SD)
Age	27.3	12.9
BMI	23.3	4.1
PTS	10.9	3.2

Sex	Male 42	Female 47
-----	---------	-----------

_	Median	Quartile
Time from injury to surgery (month)	3.0	[1.5, 7.0]

	Low grade	High grade
Lach	52	37
PS	59	30

ICC and ATS comparison

ICC (1, 1)	95%CI	ICC (2, 1)	95%CI	Pre-ATS, mm	3M-ATS, mm	p-value
0.96	0.91-0.98	0.94	0.88-0.98	1.3±4.0	-1.9±3.8	<0.0001
0.91	0.81-0.96	0.87	0.72-0.94	1.4±3.6	-0.6±3.1	<0.0001
t 0.94	0.88-0.98	0.91	0.80-0.96	1.4±3.3	-1.3±2.8	<0.0001
e 0.95	0.89-0.98	0.90	0.78-0.95	-0.1±4.1	-1.4±4.2	0.01
	l 0.96 l 0.91 t 0.94	0.96 0.91-0.98 0.91 0.81-0.96 0.94 0.88-0.98	1 0.96 0.91-0.98 0.94 1 0.91 0.81-0.96 0.87 t 0.94 0.88-0.98 0.91	1 0.96 0.91-0.98 0.94 0.88-0.98 1 0.91 0.81-0.96 0.87 0.72-0.94 t 0.94 0.88-0.98 0.91 0.80-0.96	1 0.96 0.91-0.98 0.94 0.88-0.98 1.3±4.0 1 0.91 0.81-0.96 0.87 0.72-0.94 1.4±3.6 1 0.94 0.88-0.98 0.91 0.80-0.96 1.4±3.3	0.96 0.91-0.98 0.94 0.88-0.98 1.3±4.0 -1.9±3.8 0.91 0.81-0.96 0.87 0.72-0.94 1.4±3.6 -0.6±3.1 0.94 0.88-0.98 0.91 0.80-0.96 1.4±3.3 -1.3±2.8

lateral	0.96	0.91-0.98	0.93	0.86-0.97	8.4±4.4	5.3±4.0	<0.0001
medial	0.94	0.86-0.97	0.95	0.90-0.98	8.8±4.1	6.6±4.0	<0.0001
midpoint	0.96	0.91-0.98	0.97	0.94-0.99	8.6±3.6	6.0±3.4	<0.0001
difference	0.91	0.81-0.96	0.86	0.70-0.93	-0.4±4.4	-1.3±3.9	0.04

For all measurements methods:

- ✓ Both intra- and inter-rater reliability were good (ICC>0.85).
- ✓ ATS was significantly improved at 3M compared to preoperatively

Multi regression analysis

		Lach Standarized β P value		Р	S	Ą	ge	В	ΛI		from ry to gery	P	ΓS
AS-ATS	Lateral	0.07	0.56	-0.24	0.04	-0.24	0.03	0.09	0.41	0.08	0.48	-0.22	0.05
	Medial	0.04	0.73	-0.13	0.25	-0.23	0.04	-0.15	0.18	0.22	0.06	0.92	0.41
	Midpoint	0.06	0.58	-0.22	0.05	-0.29	0.01	-0.03	0.76	0.18	0.12	-0.08	0.49
	Difference	0.03	0.82	-0.10	0.37	-0.03	0.82	0.23	0.05	-0.13	0.28	-0.29	0.01
BA-ATS	Lateral	0.09	0.40	-0.27	0.02	-0.28	0.01	0.188	0.08	0.09	0.40	0.25	0.02
	Medial	0.02	0.82	-0.08	0.41	-0.12	0.23	-0.09	0.37	0.19	0.06	0.55	<0.01
	Midpoint	0.07	0.49	-0.21	0.04	-0.24	0.02	0.06	0.54	0.17	0.10	0.48	<0.01
	Difference	0.07	0.57	-0.18	0.13	-0.15	0.19	0.26	0.03	-0.09	0.45	-0.27	0.02

- ✓ A multiple regression analysis was performed adjusted with Age, BMI, Time from injury to surgery, and PTS.
- ✓ AS-ATS was not associated with either Lachman or Pivot Shift test, whereas Lateral and Difference BA-ATS were associated with Pivot shift test.

Discussion: The relationship and utility between knee instabilities and ATS

The Inter-rater reliability of AS-ATS on radiograph was high, with an ICC of 0.894 (95% CI, 0.819–0.938).

Müller B et al. KSSTA. 2016

AS-ATS on MRI improved postoperatively at 3 years after ACLR.

Lin L et al. Am J Sports Med. 2022

Lateral AS-ATS on MRI was correlated with the Pivot Shift test.

Liu et al Arthroscopy. 2022

In our study:

- The ICC was 0.85 or higher for all measurement methods, with Intra and Inter-rater reliability being as high as previously reported
- ➤ All ATS at 3 months postoperatively was significantly improved compared to pre-ACLR values in all measurement methods
- > Lateral AS- and BS-ATS, midpoint BS-ATS was associated with rotational instability

Utility and potential of ATS

From the result of our study:

ATS on knee extended load-bearing Radiographs may be useful for detecting ACL injuries and for pre or postoperative evaluation

Limitation

- ✓ Small sample size
- ✓ Lack comparison with dynamic test
- ✓ ATS on Knee extended load-bearing Radiographs may vary depending on knee angle and muscle activation during standing

In the future:

Further research is needed to establish the unique utility of measuring ATS with a knee extended load-bearing Radiographs

Conclusion

ATS evaluated by Knee extended load-bearing Radiographs:

- ✓ The reliability of the two measurement methods, AS-ATS and BA-ATS, was high
- ✓ ATS significantly improved after ACLR
- ✓ ATS measured using the Bone axis was associated with rotational instability

References

- Muller B, Duerr ERH, van Dijk CN, Fu FH. Anatomic anterior cruciate ligament reconstruction: reducing anterior tibial subluxation. Knee Surg Sports Traumatol Arthrosc 2016;24:3005–10.
- Kim S-G, Kobayashi K, Uchino S, Nozawa M. Radiographic assessment of the tibiofemoral relationship in anterior cruciate ligament deficient knees. J Orthop 2021;23:256–8.
- Ye Z, Wu X, Chen J, Cho E, Xie G, Dong S, et al. Association Between Anterior Tibial Subluxation of Lateral Compartment and High-Grade Knee Laxity in Patients With Anterior Cruciate Ligament Deficiency. Am J Sports Med 2023;51:1698–707.
- Zhang Z-Y, Pan X-Y, Maimaitijiang P, Meng L-Y, He Z-Y, Zhao Q, et al. Anterior tibial subluxation measured under a modified protocol is positively correlated with posterior tibial slope: a comparative study of MRI measurement methods. Knee Surg Sports Traumatol Arthrosc 2022;30:3350–60.
- Lin L, Wang H, Wang Y, Wang J, Liu Y, Yu J. Double-Bundle Versus Single-Bundle Anterior Cruciate Ligament Reconstruction in Patients With Significant Passive Anterior Tibial Subluxation. Am J Sports Med 2022;50:943–50.
- Liu Z, Jiang J, Yi Q, Teng Y, Liu X, He J, et al. An increased posterior tibial slope is associated with a higher risk of graft failure following ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 2022;30:2377–8

