

Three-dimensional CT bone model improves interobserver reliability of trochlea dysplasia using the Dejour classification in patients with patellar dislocation

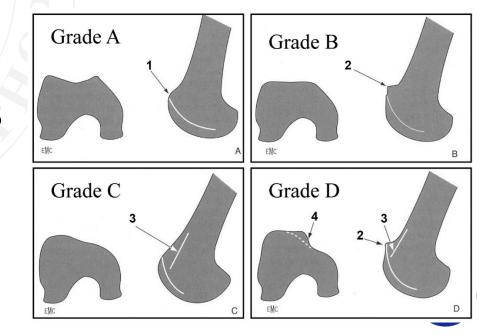
Rika Shigemoto, Kanto Nagai, Kohei Kamada, Kyohei Nishida, Noriyuki Kanzaki, Yuichi Hoshino, Takehiko Matsushita, Ryosuke Kuroda

> Department of Orthopaedic Surgery Kobe University Graduate School of Medicine

The 15th Biennial ISAKOS Congress COI Disclosure Information

Presenter: Rika Shigemoto

I have no financial relationships to disclose.


Background

Femoral trochlear dysplasia

- One of the key risk factors of patellar dislocation^{1, 2}
- Dejour classification is commonly used for morphological assessment of trochlear dysplasia³

Dejour classification

• Interobserver reliability is not high^{4, 5}

Purpose

To investigate the effect of high-resolution 3D-CT bone model on the interobserver reliability of the Dejour classification

Hypothesis

Interobserver reliability of Dejour classification would be higher when using 3D-CT bone model than using only a plain radiograph

Patients

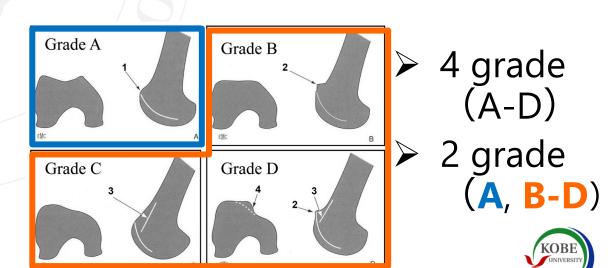
Patients who underwent surgical treatment for patellar dislocation (2018/8 - 2022/10)

30 patients 30 knees (24.6 years, M/F 9/21)

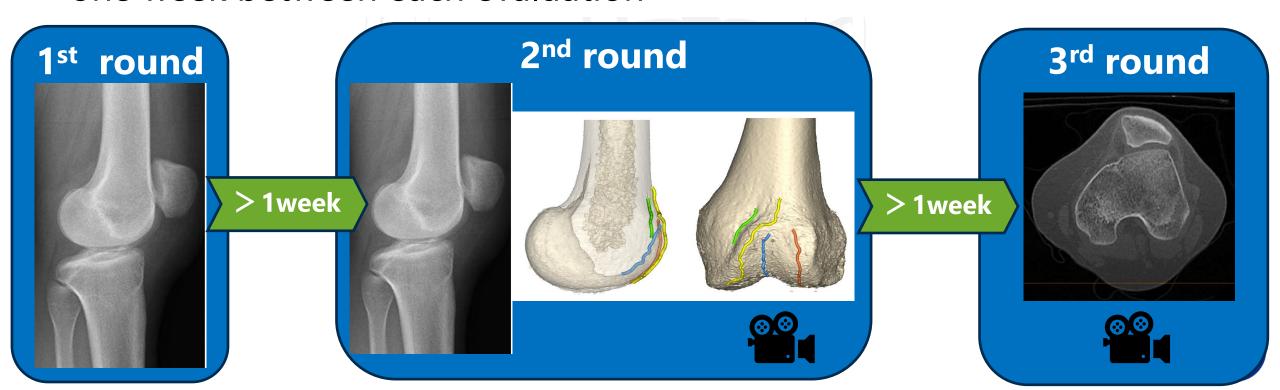
Exclusion criteria

- Incomplete plain lateral radiographs or CT images
- Plain lateral radiographs showing misalignment between the medial and lateral femoral posterior condyles: >5mm

Methods

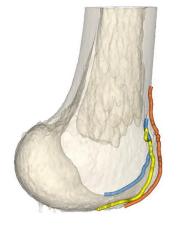

•Four orthopedic surgeons classified the cases into four groups (A, B, C, D) according to the Dejour classification three times

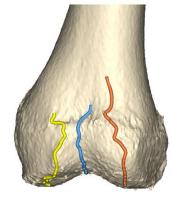
•In addition, Dejour classification was simplified into **two grades** for evaluation^{6, 7}: "mild" (Grade A) and "severe"

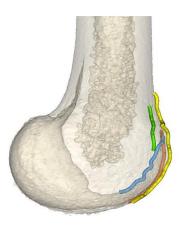

(Grade B-D)

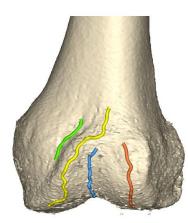
Statistical Analysis

 Interobserver reliability was assessed using Fleiss' kappa


- > The first round was based solely on plain lateral radiographs
- ➤ The second round was using additional videos that allowed for observation from all directions by rotating the 3D-CT model
- > The third round was using only axial CT images that allowed observation of all slices of the femoral trochlea
- ➤ All evaluations were performed by all orthopedic surgeons with at least one week between each evaluation






3D-CT modeling

- 3D distal femur model was created by using preop CT with a slice thickness of 0.5 mm
- The highest points of the medial and lateral articular surfaces of the femoral trochlea, as well as the lowest point of the trochlear groove relative to the posterior femoral condylar axis, were marked every 2-3 slices using axial images
- If there was a lowest point in the anterior part of the distal femur other than the trochlear groove, these points were also marked

Results

Interobserver scores for the Dejour Classification

mitter observer stories for the sejour chassimon					
Round	4-grade Kappa (agreement)	p-value	2-grade Kappa (agreement)	p-value	
First	0.37 (fair)	<0.0001	0.31 (fair)	<0.005	
Second	0.52 (moderate)	<0.0001	0.65 (substantial)	< 0.0001	
Third	0.37 (fair)	< 0.0001	0.57 (moderate)	< 0.0001	

The categorization of Fleiss' kappa (0- 0.20, slight agreement; 0.21-0.40, fair; 0.41-0.60, moderate; 0.61-0.80, substantial; and 0.81-1.00, almost perfect)

Discussion

• 3D-CT bone model improved interobserver reliability of the Dejour classification compared to the assessment using only plain radiograph or CT scan

 Because mild/severe assessment was changed in onethird of the cases, there is a possibility that the evaluation may be either overestimated or underestimated based solely on plain lateral
radiographs

Comparison with previous reports

Author	Journal & year	Image modality	Interobserver reliability
Moushinho et al.	Rev Bras Orthop, 2019	Xp Xp & CT	0.5
Fuchs et al.	KSSTA, 2022	MRI axial 3D MRI	0.48
Yang et al.	KSSTA, 2023	CT axial	0.33 - 0.51
Martinez-Cano et al	. KSSTA, 2024	Xp MRI Xp & MRI	0.2 0.13 0.44
The present study		Xp Xp & 3D-CT	0.4

Interobserver reliability improved with evaluation using multiple images

Conclusion

3D-CT bone model of distal femur with marked bony landmarks appears to improve interobserver reliability of the Dejour classification compared to the assessment using only plain radiographs, suggesting the usefulness of 3D-CT model in evaluating trochlear dysplasia

References

- 1. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19-26.
- 2. Huntington LS, Webster KE, Devitt BM, Scanlon JP, Feller JA. Factors Associated With an Increased Risk of Recurrence After a First-Time Patellar Dislocation: A Systematic Review and Meta-analysis. Am J Sports Med. 2020;48(10):2552-2562.
- 3. Paiva M, Blønd L, Hölmich P, et al. Quality assessment of radiological measurements of trochlear dysplasia; a literature review. Knee Surg Sports Traumatol Arthrosc. 2018;26(3):746-755.
- 4. Nelitz M, Lippacher S, Reichel H, Dornacher D. Evaluation of trochlear dysplasia using MRI: Correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surgery, Sport Traumatol Arthrosc. 2014;22(1):120-127.
- 5. Martinez-Cano JP, Tuca M, Gallego A, Rodas-Cortes Y, Post WR, Hinckel B. The Dejour classification for trochlear dysplasia shows slight interobserver and substantial intraobserver reliability. Knee Surgery, Sport Traumatol Arthrosc. 2024;32(6):1363-1369.
- 6. Tscholl PM, Wanivenhaus F, Fucentese SF. Conventional Radiographs and Magnetic Resonance Imaging for the Analysis of Trochlear Dysplasia: The Influence of Selected Levels on Magnetic Resonance Imaging. Am J Sports Med. 2017;45(5):1059-1065.
- 7. Yang G, Dai Y, Dong C, Niu Y, Kang H, Wang F. Two-type classification system for femoral trochlear dysplasia in recurrent patellar instability based on three-dimensional morphology. Knee Surg Sports Traumatol Arthrosc. 2023;31(5):1790-1797.