Remnant Preservation and Its Effects on Cyclops Lesions and Postoperative Knee Instability in Anterior Cruciate Ligament Reconstruction: A Propensity Score-Matched Study

Ota K¹, Nozaki M¹, Fukushima H¹, Hanaki S¹, Abe K¹, Kobayashi M², Kawanishi Y³, Kato J⁴, Murakami H¹

¹ Nagoya City University Department of Orthopedic Surgery, Nagoya, Japan

² Nagoya City University Midori Municipal Hospital, Nagoya, Japan

³ Ogaki Municipal Hospital, Ogaki, Japan

⁴ Kasugai Municipal Hospital, Kasugai, Japan

Faulty Disclosure Information

Nothing to disclosure

Introduction

Remnant preservation during ACLR
Revascularization ↑ ⇒ Graft synovial coverage ↑

Wang H.D, et al. J Orthop Surg Res. 2018

- Unclear points
 - ✓ Incidence of cyclops lesions
 - ✓ Postoperative knee instability

McMahon PJ, et al. Arthroscopy. 1999 Kambhampati SBS, et al. Orthop J Sports Med. 2020

> Wang H, et al. Biomed Res Int. 2019 Allende F, et al. Am J Sports Med. 2024

Purpose

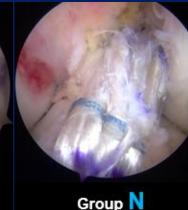
To evaluate the effect of remnant preservation during ACLR

- √ Incidence of cyclops lesions
- √ Postoperative knee instability

Materials and Methods

494 Primary double-bundle ACLR (2016.6-2023.4)

164 2nd look arthroscopy


Exclusion

Other ligament injury
Contralateral knee injury
No quantitative evaluation
No 2nd look arthroscopy

Group P (n=119) Remnant-preserving ACLR

Group N (n=45)
Remnant non-preserving ACLR

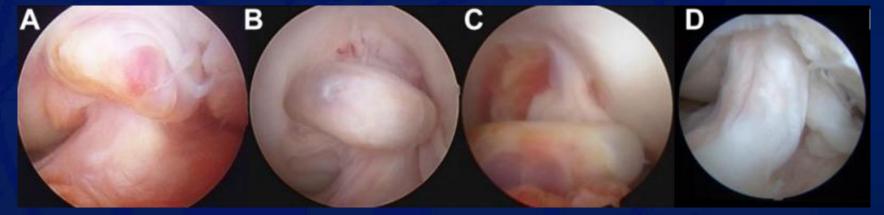
Propensity score matching →

Group P, N (n=29)

Evaluation

- > 2nd look arthroscopic findings
 - Incidence of Cyclops lesions and Cyclops syndrome
 - Graft synovial coverage : Graft score
- > Knee instability
 - Anterior tibial translation (ATT) (Rolimeter)
 - Pivot shift test Subjective evaluation: IKDC grading Quantitative evaluation (Inertial sensor)
- Statistical analysis
 - Student's t-test, Mann-Whitney U test, Fisher's exact test
 - Statistical significance was defined as P < 0.05

Cyclops lesion


✓ Defined as nodule of fibrovascular tissue around the ACL graft

whose size was >5 mm in long diameter

McMahon PJ, et al. Arthroscopy. 1999

Kambhampati SBS, et al. Orthop J Sports Med. 2020

√ Location

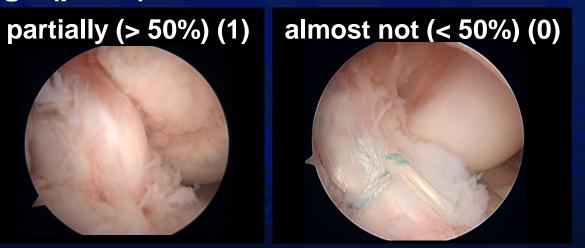
Hishimura R, et al. Orthop J Sports Med. 2022

- (A) Type 1: femoral side (B) Type 2: midsubstance (C) Type 3: tibial side (D)Type 4: anterior
- ✓ Cyclops syndrome:
 defined as a cyclops lesion with extension limitation (≥5°)

Graft score (2nd look arthroscopy)

√ Overall ACL findings (point)

Kondo E, et al. Am J Sports Med. 2015



✓ Synovial coverage (point): AMB, PLB Ochi M, et al. Arthroscopy. 2006

ACL findings: 0-2 points

AMB: 0-2 points

PLB: **0-2** points

Graft score: 0-6 points

Knee Instability Assessment

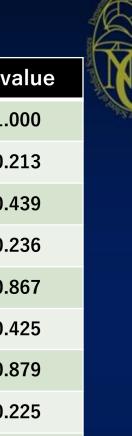
★Under general anesthesia

- ✓ ATT (Rolimeter) (SSD:side-to-side difference)
- ✓ Pivot shift test
 - Subjective evaluation: IKDC grade (0-3)
 - Quantitative evaluation (Inertial sensor) (SSR:side-to-side ratio)
 - 1 Acceleration (m/s²)

Murase A, Nozaki M, et al. JOS 2017

2 External rotational angular velocity (ERAV) (deg/s)

Aircast DJO Global



- ① Acceleration(m/s²)
- ② ERAV(deg/s)

Result 1

Patient background

	Group P (n=29)	Group N (n=29)	P value
Sex (F:M)	19:10	19:10	1.000
Age (years)	23.5 ± 10.7	27.9 ± 15.3	0.213
BMI (kg/m²)	21.7 ± 3.2	22.3 ± 2.7	0.439
Tegner activity scale	7.0 ± 1.9	6.4 ± 2.2	0.236
Time from injury to surgery (mo)	4.0 [2.0, 8.0]	2.0 [2.0, 5.7]	0.867
Time from surgery to 2 nd look surgery (mo)	17.0 [14.0, 24.0]	18.0 [14.0, 22.0]	0.425
ATT (mm) (SSD)	5.5 ± 1.4	5.6 ± 3.1	0.879
Pivot shift grade (0, 1, 2, 3)	0:1:23:5	0:5:21:3	0.225
Acceleration (m/s²) (SSR)	5.5 ± 2.6	5.6 ± 1.9	0.650
ERAV (deg/s) (SSR)	3.5 ± 1.6	3.8 ± 2.1	0.236
No. of patients with meniscus injury (n)	21	24	0.530
No. of patients with meniscus repair (n)	20	23	0.550

√ No difference in each groups

Result 2

> 2nd look arthroscopic findings

	Group P (n=29)	Group N (n=29)	P value		
Cyclops lesion(%)	4(13.8)	4(13.8)	1.000		
Type 1, 2, 3, 4 (n)	2, 2, 0, 0	2, 1, 0, 0			
Cyclops syndrome(%)	0(0.0)	2(6.9)	.491		
Graft score	5.0 ± 1.3	4.2±1.7	.064		

No difference in each groups

✓ Group P showed the tendency for better Graft score (P = .064)

Postoperative Knee Instability

	Group P (n=29)	Group N (n=29)	P value
ATT(mm) (SSD)	1.2 ± 0.8	1.5 ± 1.5	1.000
Residual pivot shift rate(%)	44.8	27.6	.274
Acceleration(m/s²)(SSR)	1.8 ± 0.9	1.6 ± 0.9	.423
ERAV(deg/s)(SSR)	1.9 ± 1.3	2.1 ± 1.4	.762

No difference in each groups

Discussion

- Remnant-preserving vs non-preserving ACLR
 - ✓ Cyclops lesions: no difference (14.5% vs 17.4%)
 - ✓ Cyclops syndrome: no difference (12.0% vs 4.0%)
 - ✓ ATT $\frac{1}{4}$ (0.51 mm (P = .004))
 - ✓ Negative pivot shift rate : 88% vs 79% (P=.006)

Kondo E, et al. Am J Sports Med. 2015

Nakayama H, et al. The Knee. 2017

Allende F, et al. Am J Sports Med. 2024 (Systematic review and Meta-analysis)

- > This study
 - **✓ Remnant preservation did not significantly affect**
 - Incidence of Cyclops lesions(13.8% vs 13.8%), Cyclops syndrome (0% vs 6.9%)
 - Postoperative knee instability
 - ✓ showed the tendency for better graft quality (Graft score: P = .064)
 - This finding supports the usefulness of remnant preservation

Conclusions

- > Remnant preservation during ACLR
 - ✓ Possibility of enhanced graft synovial coverage
 - ✓ <u>No impact on postoperative knee instability,</u> the incidence of cyclops lesions and cyclops syndrome

