

A Novel Safety Device for Bicortical Fixation in Medial-opening Wedge High Tibial Osteotomy Reduces Correction Loss and Promotes Bone Union

Shunya Otani, Masafumi Itoh, Junya Itou, Umito Kuwashima, Ken Okazaki

Department of Orthopaedic Surgery

Tokyo Women's Medical University

Faculty Disclosure Information

I have no conflicts.

Background

VS.

monocortical fixation for two distal screws

bicortical fixation for all distal screws

Monocortical fixation minimizes neurovascular injury risk¹.

Impact on post-op correction loss and bone union is unknown.

Purpose

To clarify the impact of different distal screw fixation methods on post-op correction loss and bone union.

Hypothesis

Bicortical fixation for all distal screws can prevent correction loss and achieve earlier bone union.

Participants

Study Period:

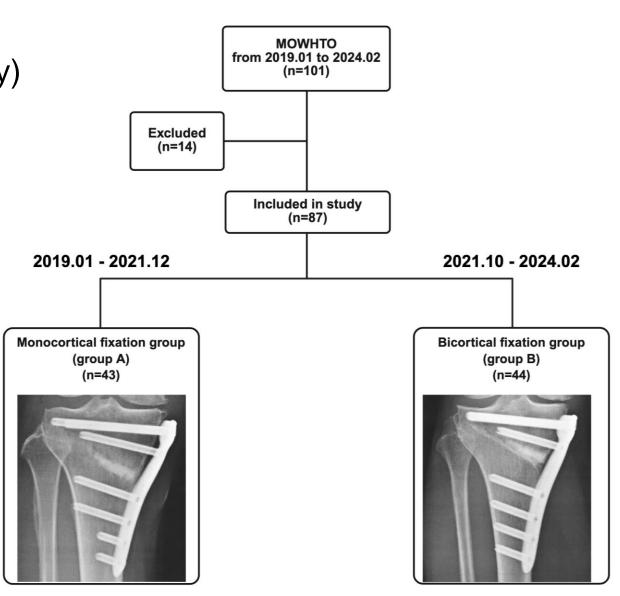
Jan. 2019 – Feb. 2024 (retrospective study)

Cohort:

95 consective patients (101 knees)

who underwent MOWHTO with TriS plate

Inclusion:


≥1 year of post-op follow-up with complete data set

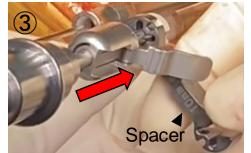
Exclusion:

Rheumatoid arthritis (RA)

Analysis:

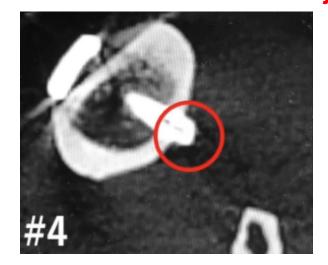
81 patients (87 knees) included

Surgical technique



MOWHTO with TriS plate (OLMPUS TERUMO BIOMATERIALS®)

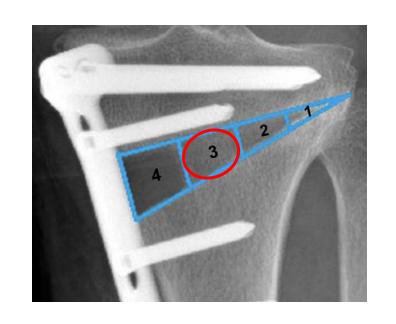
A novel "drill stopper device" was used for safe bicortical drilling.



- 1 Attach the drill stopper to the drill shaft.
- 2 Drill the near cortex until the tip contacts the far cortex.
- 3 Insert the 6 mm spacer and slide the stopper to it.
- 4 Remove the spacer.
- 5 Drill through the far cortex.

Bicortical fixation is possible without risk of neurovascular injury!

Radiographic assessment


- 1. Medial proximal tibial angle (MPTA) @ pre-op, 1 mo and 1 year
- 2. Bone union @ immediate post-op, 3 mo and 6 mo
- \aleph Bone union = the bridging callus reached zone $3^{2,3}$

Primary Outcome

Correction loss of MPTA (1-year post-op)

Secondary Outcome

Bone union in the osteotomy gap at 3 and 6 mo

Hinge fracture is evaluated by CT scan at 1 wk

Statistical analysis

Univariate analysis

Student's t-test and Chi-squared test

Multiple Linear regression analysis

Dependent variable: correction loss of MPTA

Independent variables: distal screw fixation method

opening width

BMI

presence of hinge fracture

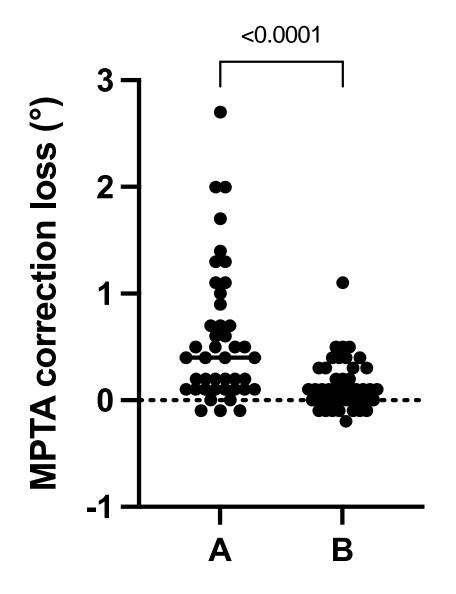
P < 0.05 was considered statistically significant.

Patient demographics

Grou	рΑ	(n =	= 43)
	1		4

Group B (n = 44)

p value


Hinge fracture	10	6	NS
Opening width (mm)	7.9 ± 1.9	7.5 ± 1.7	NS
Pre MPTA (°)	84.7 ± 2.4	84.8 ± 1.5	NS
Pre HKA (°)	183.6 ± 2.1	183.1 ± 1.8	NS
BMI (kg/m ²)	24.8 ± 3.5	24.4 ± 3.5	NS
Male / Female	15 / 28	19 / 25	NS
Age (y)	54.0 ± 10.3	58.8 ± 10.0	0.03

mean ± SD

Fisher's exact test and unpaired t test

Results: correction loss

Group A: $0.6 \pm 0.6^{\circ}$ Group B: $0.1 \pm 0.2^{\circ}$

Group A shows a large variability.

greater than $1^{\circ} = 9$ cases (21%)

greater than $2^{\circ} = 3$ cases (7%)

Multivariate analysis

Dependent variable	Independent variable		В	p value
Correction loss of MPTA	fixation method	0	-0.44	< 0.0001
	Opening width	×	-0.03	0.37
	BMI	×	0.16	0.22
	hinge fracture	×	0.0009	0.95

(adjusted $R^2 = 0.2$)

mean ± SD unpaired thest

Results: bone union

	Union rate (%) 3 mo	p value	Union rate (%) 6 mo	<i>p</i> value	
Group A (43 knees)	23	0.000	71	NIC	
Group B (44 knees)	64	0.0002	89	NS	

Bicortical fixation achieved significantly earlier bone union at 3 mo.

Discussion

B) Mono-Normal

FEA results

Monocortical fixation does not compromise mechanical stability in OWHTO¹.

Clinical practice (this study)

Bicortical fixation showed smaller MPTA correction loss.

30 MPa

200 MPa

O MPa

O MPa

O MPa

A) Bi-Normal

Possible reason for discrepancy

What FEA Can Do ✓ → Evaluate initial mechanical properties
What FEA Cannot Do × → Predict long-term effects until bone healing

Conclusion

Bicortical fixation for all distal screws significantly prevented correction loss of MPTA and achieved earlier bone union than monocortical fixation.

Clinical relevance

The use of a novel drill stopper device allows safe bicortical fixation of distal screws, potentially minimizing correction loss and leading to improved long-term outcomes after OWHTO.

Reference

- 1. Itou J, et al. Knee Surg Sports Traumatol Arthrosc. 2020
- 2. Goshima K ,et al. Knee Surg Sports Traumatol Arthrosc. 2019
- 3. Jung WH, Takeuchi R, et al. Knee Surg Sports Traumatol Arthrosc. 2020