

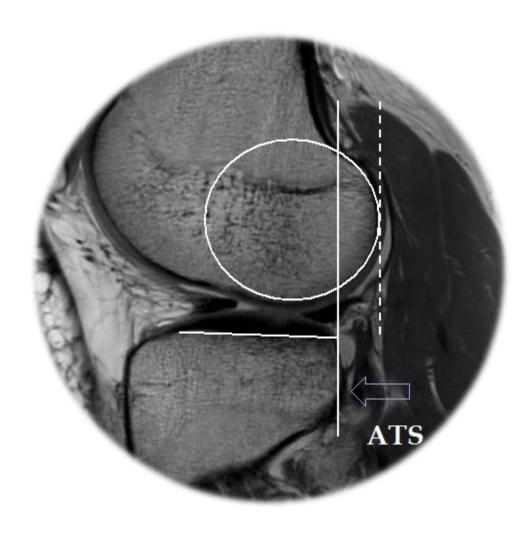
Risk Factors for Passive Anterior Tibial Subluxation on MRI in Complete ACL Tears

Ignacio Astore, Ignacio García-Mansilla, Camila Juana, Juan Pablo Zicaro, Carlos Yacuzzi, Matias Costa-Paz.

Hospital Italiano de Buenos Aires, Argentina

Faculty Disclosure Information

The authors have no disclosures



BACKGROUND

• Anterior Tibial Subluxation (ATS) following anterior cruciate ligament (ACL) injury highlights the altered relationship between the tibia and femur in patients with ACL insufficiency.

CLINICAL RELEVANCE

- High preoperative ATS has been associated with:
 - Inferior postoperative stability
 - Poorer clinical outcomes
- Identifying predictors of ATS could improve pre-op risk stratification.

PURPOSE

To assess the correlation between the degree of anterior tibial subluxation on MRI in complete ACL tears and:

Time from injury to MRI

Demographics

Tibial slope

Associated lesions (meniscal tears, chondral lesions, ALL injury)

METHODS

Study design:

- Retrospective cohort study, Institutional registry
- 558 consecutive patients with complete ACL tears included

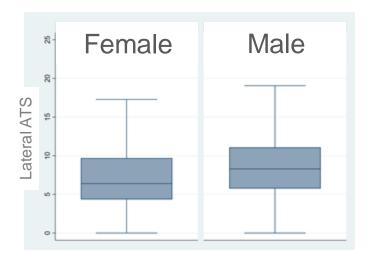
Imaging Assessment:

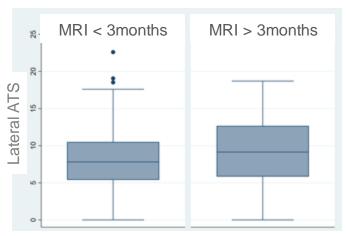
- ATS of the medial and lateral compartments relative to the femoral condyles was measured on preoperative MRI according to Tanaka et al⁶
- Variables: Meniscal tears, Chondral lesions, ALL injury, Tibial slope (medial/lateral), Time from injury to MRI (Chronic ACL injury = MRI >3 months post-injury)

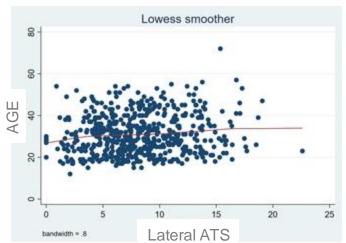
Linear regression analysis was performed for each variable to evaluate its association with ATS

RESULTS - Demographics & Injury Characteristics

Demographic data and analyzed variables of the patients divided into three groups according to the degree of lateral ATS.

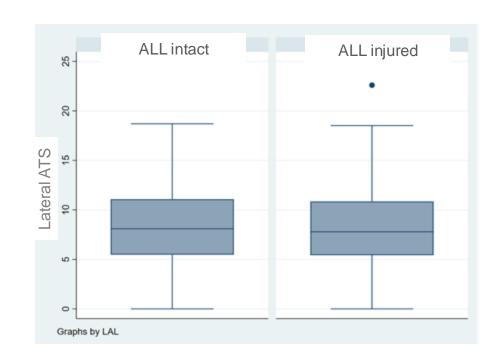

	All	ATS lat ≤3.5mm	ATS lat 3.6 a 9.9mm	ATS lat ≥10mm	p value
n	558	56	328	174	
Age, (SD)	31.0 (9.57)	28.2 (9.58)	30.8 (9.16)	32.2 (10.1)	0.022
Sex male, (%)	458 (82%)	42 (75%)	265 (81%)	151 (87%)	0.087
Chronic ACL injury, (%)	186 (33%)	16 (29%)	98 (30%)	72 (41%)	0.025
ATS med, (SD)	3.68 (2.33)	2.40 (1.96)	3.36 (2.00)	4.69 (2.64)	<0.001
ATS lat, (SD)	8.26 (3.86)	2.10 (1.00)	6.89 (1.79)	12.8 (2.19)	<0.001
SLOPE medial, (SD)	4.55 (2.83)	4.63 (2.78)	4.26 (2.66)	5.05 (3.10)	0.012
SLOPE lateral, (SD)	5.17 (3.10)	5.49 (3.11)	4.86 (2.87)	5.64 (3.44)	0.019
Asociated Injuries:					
Cartilage, (%)	110 (20%)	14 (25%)	64 (20%)	32 (18%)	0.552
Meniscus, (%)	279 (50%)	23 (41%)	149 (45%)	107 (62%)	0.001
Medial Meniscus, (%)	221 (40%)	18 (32%)	125 (38%)	78 (45%)	0.025
Lateral Meniscus, (%)	118 (21%)	11 (20%)	59 (18%)	48 (28%)	0.041
Both Meniscus, (%)	61 (11%)	6 (11%)	35 (11%)	20 (12%)	0.166
Anterolateral ligament (%)	140 (25%)	16 (28%)	82 (25%)	40 (23%)	0.923



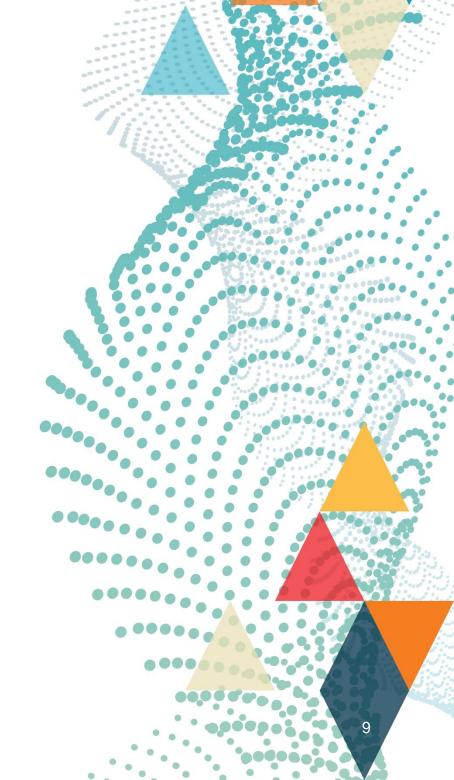


RESULTS - Significant Associations

- Chronic injuries: ↑ Lateral ATS (9.2 vs. 8 mm; p = 0.002)
- Male sex: ↑ Lateral ATS (8.4 vs. 7.4 mm; p = 0.024)
- Meniscal injury:
 - Medial: +0.84 mm, 95% CI 0.09-1.58
 - Lateral: +1.72 mm, 95% CI 1.72-2.28
- Age: +0.42 mm (95% CI 0.08, 0.75) per decade (minimal clinical relevance)

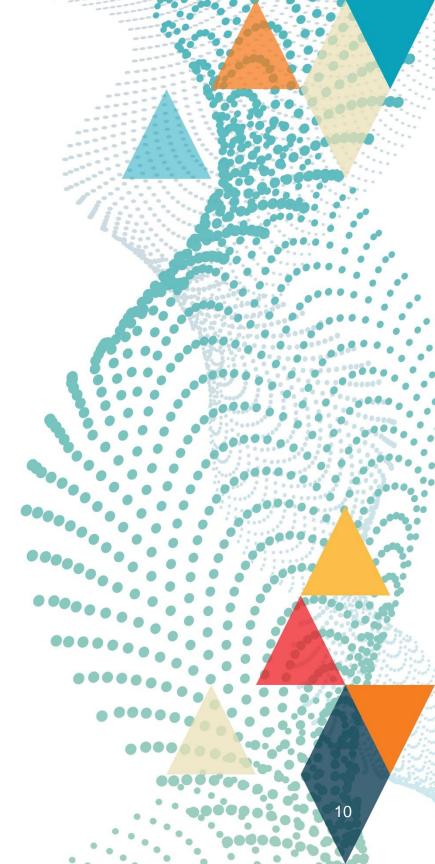


RESULTS - Non-Significant Association


- Anterolateral ligament injury (p = 0.56)
- Tibial Slope*: While lateral tibial slope was not significantly associated with ATS, the medial tibial slope demonstrated a significant association of 0.15 mm (95% Cl 0.04, 0.26), independent of sex and age.

^{*} Possible methodological bias: the measurement protocol for ATS uses a line perpendicular to the tibial plateau as a reference, which may introduce deviation when analyzing the biomechanical relationship between tibial slope and ATS ⁷

CONCLUSION


- Anterior tibial subluxation on MRI in cases of complete ACL rupture was significantly associated with male sex, MRI performed more than 3 months post-injury, and meniscal injuries.
- These findings may help identify high-risk patients preoperatively.

References

- 1. Hardy A, Klouche S, Szarzynski P, Charpentier E, Beranger JS, Bauer T, Rousselin B, Judet O, Hardy P. A threshold value of 3.5 mm of passive anterior tibial subluxation on MRI is highly specific for complete ACL tears. Knee Surg Sports Traumatol Arthrosc. 2019 Mar;27(3):885-892.
- 2. Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD. Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc. 2010 Sep;18(9):1269-76.
- 3. McDonald LS, van der List JP, Jones KJ, et al. Passive Anterior Tibial Subluxation in the Setting of Anterior Cruciate Ligament Injuries: A Comparative Analysis of Ligament-Deficient States. Am J Sports Med. 2017;45(7):1537-1546.
- 4. Almekinders LC, de Castro D. Fixed tibial subluxation after successful anterior cruciate ligament reconstruction. Am J Sports Med. 2001 May-Jun;29(3):280-3.
- 5. GY, Zhang H, Zhang J, Zhang ZJ, Zheng T, Feng H. Excessive Preoperative Anterior Tibial Subluxation in Extension Is Associated With Inferior Knee Stability After Anatomic Anterior Cruciate Ligament Reconstruction. Am J Sports Med. 2020 Mar;48(3):573-580.
- 6. Tanaka MJ, Jones KJ, Gargiulo AM, Delos D, Wickiewicz TL, Potter HG, Pearle AD. Passive anterior tibial subluxation in anterior cruciate ligament-deficient knees. Am J Sports Med. 2013 Oct;41(10):2347-52.
- 7. Zhang ZY, Pan XY, Maimaitijiang P, Meng LY, He ZY, Zhao Q, Wang C, Wang JQ. Anterior tibial subluxation measured under a modified protocol is positively correlated with posterior tibial slope: a comparative study of MRI measurement methods. Knee Surg Sports Traumatol Arthrosc. 2022 Oct;30(10):3350-3360.

