

Comparable Early Conversion Rates To Total Knee Arthroplasty
Among Different Bony Deformity Locations After Medial Opening
Wedge High Tibial Osteotomy: A North American Cohort Study

Takaaki Hiranaka¹, Takeo Tokura¹, Ryan Degen¹, Kevin Willits¹, Robert Litchfield¹, Alan Getgood^{1,2}

¹ Fowler Kennedy Sports Medicine Clinic, Western University, London, Ontario, Canada.

² Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar

Disclosure of Conflict of Interest

We have nothing to declare for this study.

Introduction: deformity locations in varus alignment

Medial opening wedge high tibial osteotomy (MOWHTO)

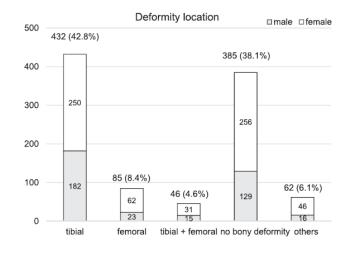
is a knee realignment procedure for varus alignment.

Deformity locations in varus alignment

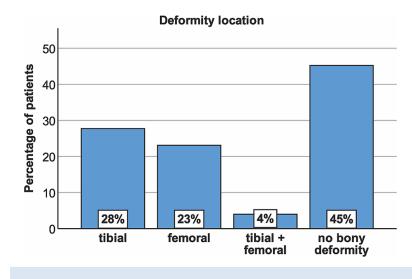
- 1 Tibial deformity (mMPTA < 85°)
- 2 Femoral deformity (mLDFA > 90°)
- 3 Combined deformity (tibial + femoral)
- 4 No bony deformity

(ligament laxity, intra-articular degeneration)

Bony deformity



Introduction: deformity locations in varus alignment



Ethnic differences in varus deformity phenotypes

Asian population: Tibial deformity predominant (43%)

Abe et al KSSTA 2023

European population: Higher prevalence of femoral deformity (23%)

Feucht MJ et al. KSSTA 2021

Purpose

- To analyze deformity locations in North American patients with varus alignment undergoing MOWHTO
- To evaluate **TKA conversion rates** and **TKA-free survival** after MOWHTO based on bony deformity location

Methods: study design and patient selection

Study design

- 271 patients who underwent MOWHTO (January 2018 July 2022)
- Mean age: 51.6 ± 8.4 years
- Mean follow-up: 3.6 ± 1.0 years (range: 2-6 years)

Inclusion criteria

- Age 18–60
- Medial knee OA, chondral defects, meniscal deficiencies, or joint restoration.

Exclusion criteria

- Previous osteotomy
- Torsional or sagittal correction osteotomy

Methods: deformity analysis

Software:

mediCAD® (Hectec GmbH, Germany)

Radiographic parameters:

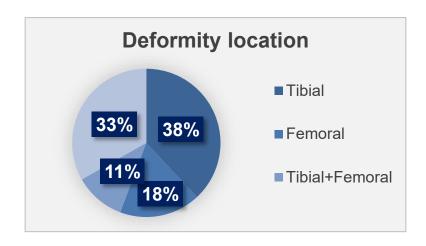
- HKA angle
- mMPTA $(< 85^{\circ} = \text{tibial varus})$
- mLDFA (> 90° = femoral varus)

Deformity location:

- Tibial deformity
- Femoral deformity
- Combined deformity (tibial + femoral)
- No bony deformity

Statistical analysis:

- TKA conversion rate (Chi-square test)
- TKA-free survival (Kaplan-Meier, Log-rank test)



Result: deformity location in North American patients

Deformity location in North America

- Tibial deformity most common (38%)
- Two-thirds had bony deformity
- One-third had no bony deformity

Patient demographics

	Deformity location				
	Tibial	Femoral	Combined (tibial + femoral)	No bony deformity	P value
Indications for osteotomy (OA/joint preservation)	92/11	42/6	26/4	77/13	0.887
Age	52.6 ± 8.3	49.4 ± 9.8	52.2 ± 7.6	50.3 ± 8.9	0.111
Preoperative K-L grade (1/2/3/4)	4/53/32/14	3/20/20/5	0/15/13/2	4/52/29/5	0.452
Preoperative HKA angle (º)	172.6 ± 2.5	172.9 ± 2.4	168.9 ± 2.5	174.8 ± 2.4	< 0.05ª

Note: Values are presented as mean ± standard deviation.

- No significant differences in age or K-L grade
- Preoperative HKA angle significantly differed (p < 0.05)

 $^{^{\}rm a}$ Statistically significant (p < 0.05) in all comparisons except between the tibial and femoral groups.

Result: TKA conversion rates after MOWHTO

TKA conversion rates and time to conversion by deformity location

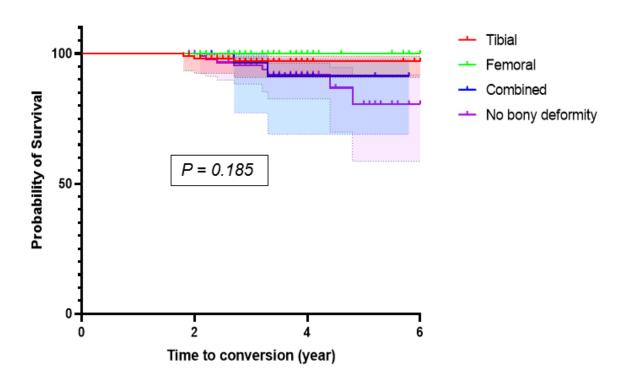
Deformity center	Number of cases (n)	Conversion to TKA (n)	Conversion rate (%)	Time to conversion (years)
Tibial	103	3	3	2.2 ± 0.4
Femoral	48	0	0	Not applicable
Combined (tibial + femoral)	30	2	7	3.0 ± 0.3
No bony deformity	90	8	9	3.2 ± 0.9

Note: Values are presented as mean ± standard deviation unless otherwise indicated.

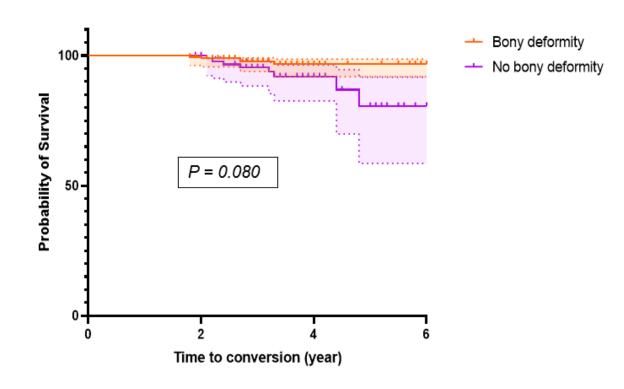
No significant difference (p = 0.080)

TKA conversion rates and times after MOWHTO: bony vs. no bony deformity

Deformity location	Number of cases (n)	Conversion to TKA (n)	Conversion rate (%)	Time to conversion (years)
Bony deformity	181	5	3	2.5 ± 0.5
No bony deformity	90	8	9	3.2 ± 0.9


Note: Values are presented as mean ± standard deviation unless otherwise indicated.

Result: TKA-free survival



TKA-free survival by deformity location

TKA-free survival: bony vs. no bony deformity

No significant difference in TKA-free survival (p = 0.185)

No significant difference in TKA-free survival (p = 0.080)

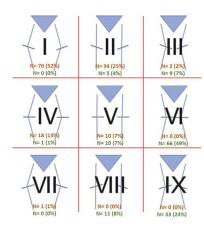
Discussion: impact of deformity location on MOWHTO outcomes

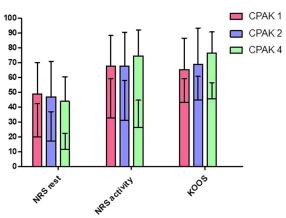
Key findings:

- Tibial deformity most common (38%) in North America
- Bony deformity in 67%, no bony deformity in 33%

TKA-free survival:

- No significant survival difference by deformity location (p = 0.185)
- Low TKA conversion rates across all groups


Clinical outcomes:

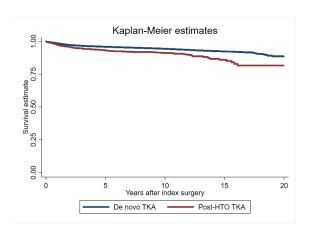

- No significant outcome differences across varus phenotypes
- MOWHTO improves femoral-driven and intra-articular varus knees

Van Genechten et al. KSSTA 2023

MOWHTO benefits are not limited to tibial deformity

CPAK Classification

Discussion: MOWHTO in patients without bony deformity



Key findings:

- MOWHTO benefits in this subgroup remain uncertain
- No significant difference in TKA conversion (p = 0.068) or TKA-free survival (p = 0.080)
- Conversion rate: 9%

Higher TKA conversion without bony deformity:

- Excessive JLO/mMPTA may lead to worse outcomes
 Akamatsu et al. Arthroscopy 2018
- Arthroplasty outcomes following HTO are comparable to primary TKA
 without a preceding osteotomy
 EI-Galaly A et al. J Arthroplasty 2018

MOWHTO remains a viable option despite a higher TKA conversion risk

- Tibial deformity was the most common (38%) in this North American cohort
- Two-thirds had bony deformity, one-third had no bony deformity
- MOWHTO remains beneficial even in non-tibial deformities
- Deformity location does not significantly impact TKA-free survival

References

- Abe K, Goshima K, Morinaga T, Nozaki M, Fukushima H, Kato J, et al. Constitutional varus knee due to tibial deformity is common and represents a good indication for high tibial osteotomy in Japanese population: Consideration of 1010 knees. Knee Surg Sports Traumatol Arthrosc. 2024;32(5):1332-43.
- Feucht MJ, Winkler PW, Mehl J, Bode G, Forkel P, Imhoff AB, et al. Isolated high tibial osteotomy is appropriate in less than two-thirds of varus knees if excessive overcorrection of the medial proximal tibial angle should be avoided. Knee Surg Sports Traumatol Arthrosc. 2021;29(10):3299-309.
- Van Genechten W, Vanneste Y, van Beek N, Michielsen J, Claes S, Verdonk P. No clinical outcome difference between varus phenotypes after medial opening-wedge high tibial osteotomy at 2 years follow-up. Knee Surg Sports Traumatol Arthrosc. 2024;32(4):1016-25.
- Akamatsu Y, Kumagai K, Kobayashi H, Tsuji M, Saito T. Effect of Increased Coronal Inclination of the Tibial Plateau
 After Opening-Wedge High Tibial Osteotomy. Arthroscopy. 2018;34(7):2158-69 e2.
- Nakayama H, Schroter S, Yamamoto C, Iseki T, Kanto R, Kurosaka K, et al. Large correction in opening wedge high tibial osteotomy with resultant joint-line obliquity induces excessive shear stress on the articular cartilage. Knee Surg Sports Traumatol Arthrosc. 2018;26(6):1873-8.
- El-Galaly A, Nielsen PT, Jensen SL, Kappel A. Prior High Tibial Osteotomy Does Not Affect the Survival of Total Knee Arthroplasties: Results From the Danish Knee Arthroplasty Registry. J Arthroplasty. 2018;33(7):2131-5 e1.

