

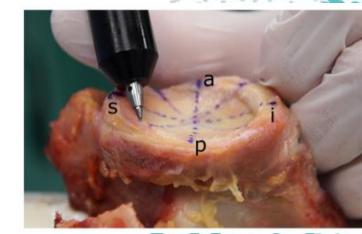
The Impact Of Glenoid Concavity And Version On Anterior Shoulder Stability In The Clinical Setting

Sebastian Oenning, Clara De Castillo, Elena Jacob, Jens Wermers, Michael J. Raschke, J. Christoph Katthagen

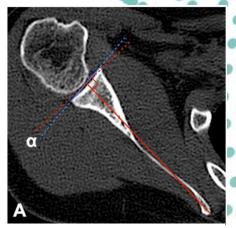
University Hospital Münster, Germany
Department of Trauma, Hand and Reconstructive Surgery
Director: Univ.-Prof. Dr. med. Michael J. Raschke

Faculty Disclosure Information

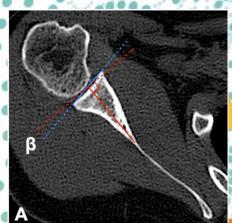
Nothing to disclose


Background

Glenoid concavity:


- Biomechanics: **High correlation** between **concavity and anterior stability**^[1, 2]
- CT-based bony shoulder stability ratio (BSSR) estabilished considering glenoid radius/depth/concavity [3]

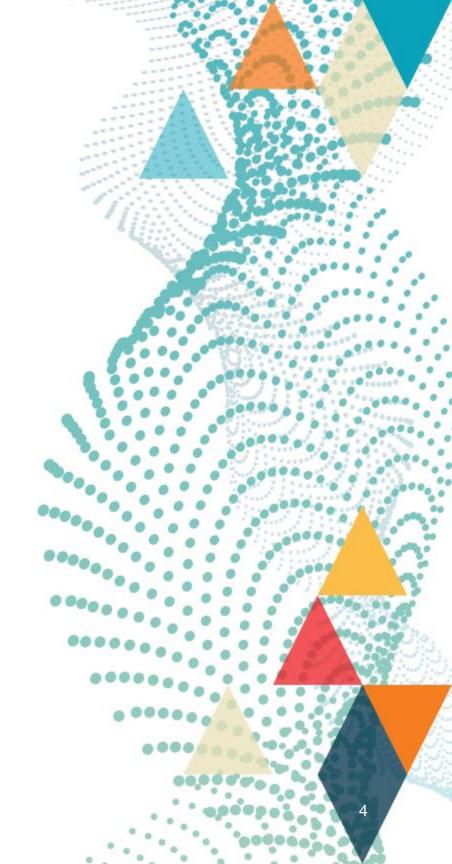
Glenoid version:


- Biomechanics: Linear relation: **Retroversion** $\downarrow \rightarrow$ **anterior stability** \downarrow ^[4]
- Confirmed in clinical studies for posterior instability [5, 6]
- Regarding anterior instability: only few clinical studies, heterogenous results

Wermers et al., KSSTA, 2021

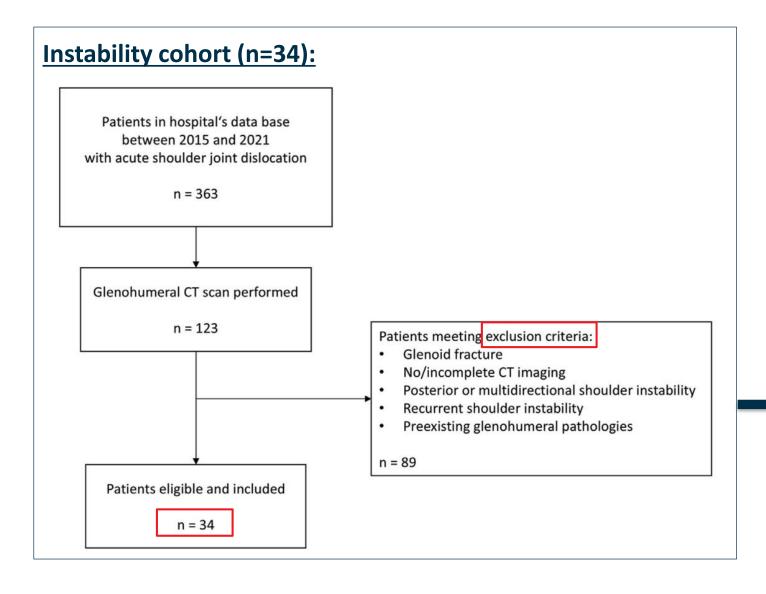
Friedman method

Glenoid vault method



Hypothesis

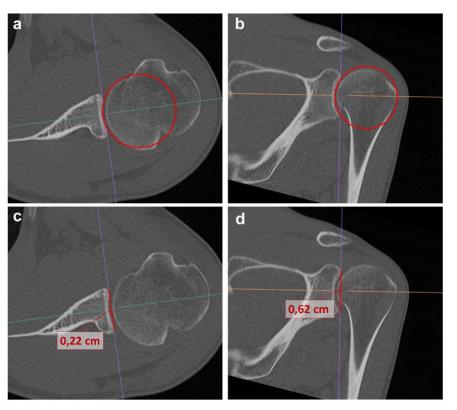
Anterior glenohumeral instability is associated with


- lower glenoid concavity and
- less glenoid retroversion.

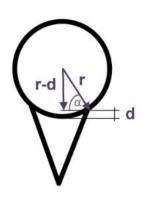
Methods - Study design

Study design: Retrospective case-control study at level-1-trauma center

Control cohort (n=68):

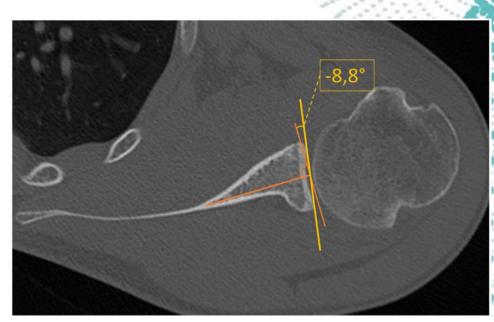

- Derived from hospital's data base of patients with polytrauma CT scans
- from 2020 2021
- without acute and chronic shoulder pathologies

1:2 matching:


- **same-gender (m/f)** patients' **equal-sided** shoulders
- **Age-matching** with ±2 years in n=20 instability patients; max. difference 6 years

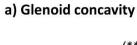
Methods – Radiological measurements

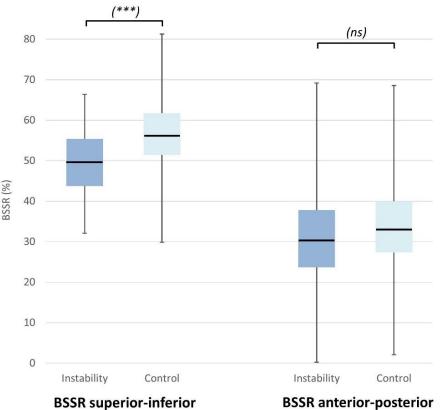
Concavity


$$BSSR = \frac{1 - \left(\frac{r - d}{r}\right)^2}{\frac{r - d}{r}}$$

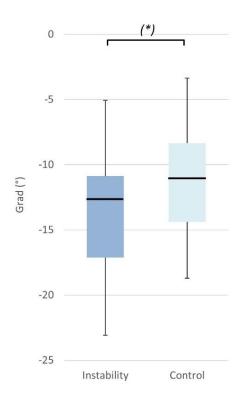
Calculation of the **BSSR a.p. and s.i.** by

- Measuring glenoid **radius via best-fit-circle method** (a, b)
- Measuring glenoid **depth** (c, d)


Version



Calculation of glenoid version based on glenoid vault" method by Matsumura et al


- $>0^{\circ} \rightarrow$ anteversion
- <0° → retroversion

Results – Primary outcome

b) Glenoid version

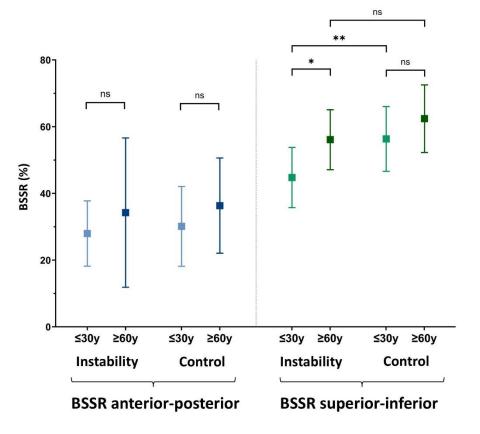
	Instability cohort (n=34)	Control cohort (n=68)
Age	46.9 (±20.3)	48.6 (±19.9)
Gender	25 male; 9 female	50 male; 18 female
Side of injury	19 right; 15 left	38 right; 30 left
Trauma mechanism	n=27 adequate trauma (falling, sports injury, traffic accidents) n=5 seizures n=2 atraumatic, hyperlaxity	

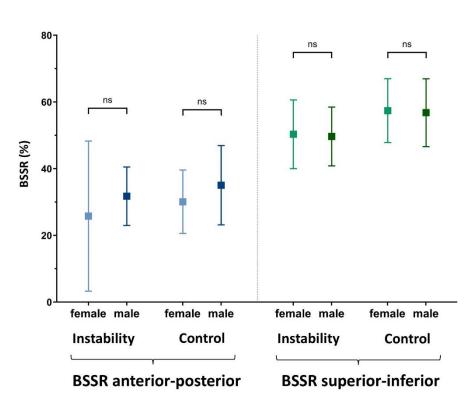
- Lower superior-inferior BSSR in instability cohort
 - (49.8% (±9.0) vs. 56.9% (±9.0), p=.0007)
 - 1% BSSR(s.i.) $\uparrow \rightarrow$ 8% risk \downarrow of anterior shoulder instability *
- **No significant difference** in **a.p.** BSSR
- Low correlation between s.i. and a.p. R²=0.23 **

Version:

- Higher retroversion in instability cohort
 - (-13.14° (±4.38°) vs. -11.44° (±3.66); p=.0407)

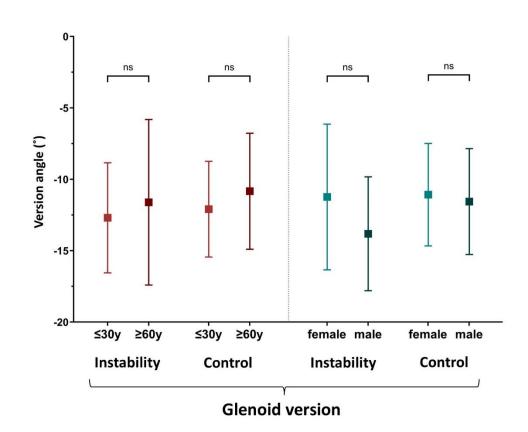
*Binary logistic regression // **Linear regression model


Results – Subgroup analyses



Subgroups within each cohort: <30-year-old vs. >60-year-old // male vs. female

Concavity:


- <30-year-old patients: lower BSSR(s.i.) in instability cohort (p=0.0064)
- <u>>60-year-old patients</u>: no difference between instability and control cohort
- No gender-specific differences (p>0.1157)

Version:

Neither age- nor gender-specific differences were found (p>0.1326)

Discussion

Limitations:

Retrospective study design // CT-slice thickness 1-1.5 mm // mean age 46.9 years: many young patients only received X-ray/MRI, no CT scans

Concavity:

- Sup.-inf. concavity \downarrow in instability cohort \rightarrow consistent with recent literature & biomechanical studies
- **Ant.-post. concavity**: Same tendencies but no significant difference → larger study population needed?
- Sup.-inf. concavity more important than ant.-post. due to additional anterior stabilizing structures (e.g. coracoid)?

Version:

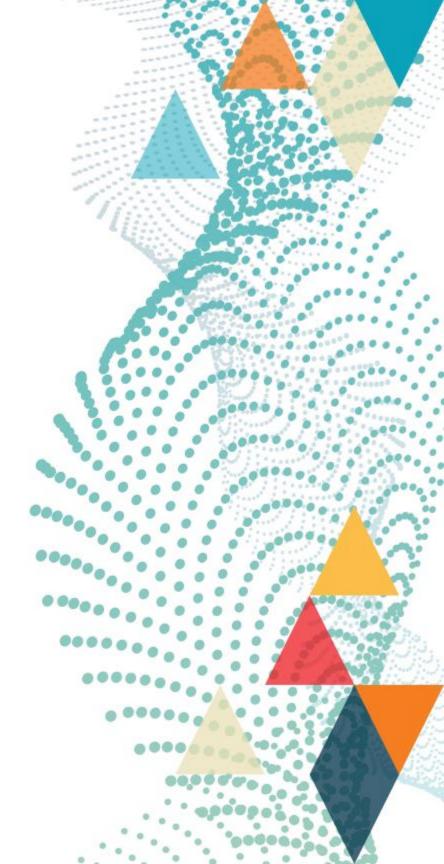
- Higher retroversion in instability cohort
 - Role of glenoid version remains controversial; recent literature ambiguous, not consistent with biomechanical studies
 - Intra-individual reciprocal anatomical adaption of glenoid concavity & version?

Individualized therapeutical approach needed for anterior shoulder instability, focussing on glenoid concavity as a relevant stabilizing factor

Thank you for your attention

Sebastian Oenning, MD
University Hospital Münster, Germany
Department of Trauma, Hand and Reconstructive Surgery
Director: Univ.-Prof. Dr. med. Michael J. Raschke

References:


- (1) Moroder et al., Challenging the Current Concept of Critical Glenoid Bone Loss in Shoulder Instability: Does the Size Measurement Really Tell It All? Am J Sports Med. 2019
- (2) Wermers et al., Glenoid concavity has a higher impact on shoulder stability than the size of a bony defect. Knee Surg Sports

 Traumatol Arthrosc. 2021
- (3) Moroder et al., Anterior Shoulder Instability Is Associated With an Underlying Deficiency of the Bony Glenoid Concavity.

 Arthroscopy. 2015
- (4) Eichinger et al., Biomechanical Evaluation of Glenoid Version and Dislocation Direction on the Influence of Anterior Shoulder Instability and Development of Hill-Sachs Lesions. Am J Sports Med. 2016
- (5) Gottschalk et al., Posterior shoulder instability: does glenoid retroversion predict recurrence and contralateral instability?

 Arthroscopy. 2015
- (6) Privitera et al., Glenoid version and its relationship to glenohumeral instability and labral tears. J Shoulder Elbow Surg. 2016
- (7) Aygün et al., Comparison of Magnetic Resonance Imaging and Computed Tomography Scans of the Glenoid Version in Anterior Dislocation of the Shoulder. Orthopedics. 2017
- (8) Matsumura N et al., Computed tomography measurement of glenoid vault version as an alternative measuring method for glenoid version. J Orthop Surg Res. 2014

