

Outcomes of Bicruciate Ligament Reconstruction: A systematic review

Presenter: Parth Lodhia MD FRCSC

Co-Authors: Gina K Peck MD, Jenny He MD, Yasir AlShehri MD, Jordan Michael Leith MD FRCSC, Mark Owen McConkey MD FRCSC

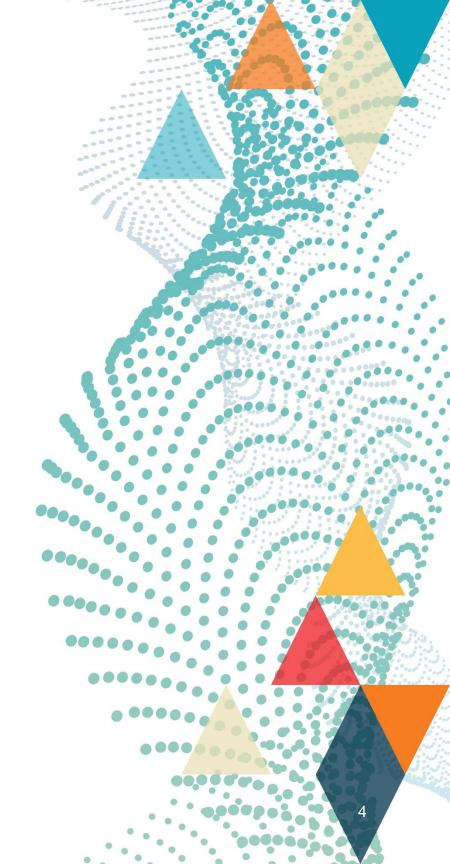
University of British Columbia, Vancouver, Canada

Faculty Disclosure Information

- Speaker for Arthrex
- Support received from Ossur
- Editorial or Governing Board of Arthroscopy
- Board of Directors member of:
 - Canadian Orthopaedic Association
 - International Society of Arthroscopy, Knee Surgery, and Orthopaedic Sports
 Medicine
 - International Society of Hip Arthroscopy (ISHA)

Introduction

- Bicruciate (ACL & PCL) injuries are rare
- Often occur in context of knee dislocation
- Knee dislocations as a whole account for less than 0.02% of all orthopaedic injuries¹
- Isolated bicruciate ligament injuries are reported in as little as 5.3% of all knee dislocations²



Objective

To perform a systematic review on the outcomes of isolated bicruciate ligament reconstruction

Methods

- Systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines
- PubMed, MEBASE, and MEDLINE searched from inception to February 2024
- "anterior cruciate ligament", "posterior cruciate ligament", "treatment outcome", and "bicruciate ligament reconstruction"
- Study characteristics, surgical techniques, and clinical outcomes were collected
- Weighted averages of commonly reported outcomes using a randomeffects model due to the small number of studies, small sample sizes, and heterogeneity across studies

Methods

Inclusion criteria:

- English publications
- Clinical outcomes of isolated bicruciate ligament reconstruction without associated collateral ligament, posterolateral, or posteromedial repair or reconstruction

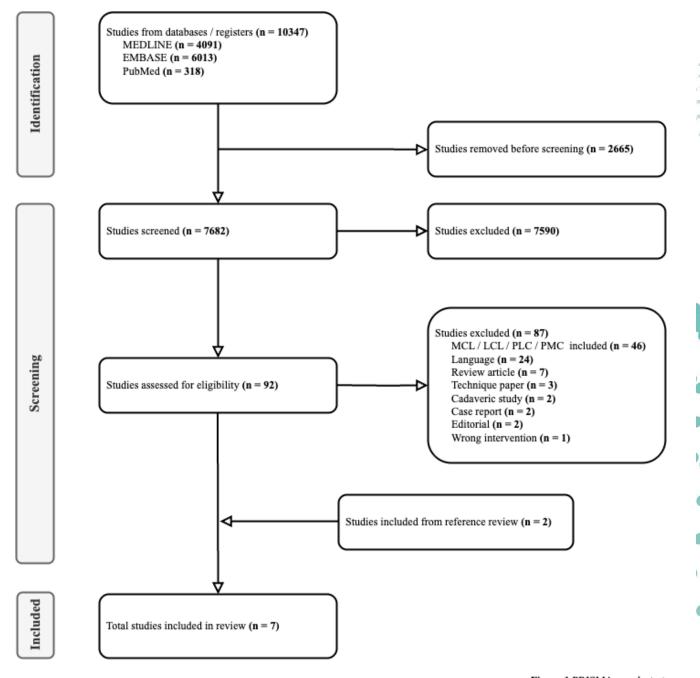


Table 1 Study Characteristics and Patient Demographics

Author (year)	Type of Study, LOE	Sample size	Male:Female	Age, mean (years)	Acute Injuries (n)	Chronic Injuries (n)	MINORS score, comparative	MINORS score, non- comparative
Gupta et al. (2021) ³	Retrospective Cohort, III	21	3:1	27	NR	NR	15	NA
Huang et al. (2010) ⁴	Case Series, IV	18	8:1	27.5	NR	NR	NA	8
Shi et al. (2008) ⁵	Case Series, IV	15	2.8:1	24	3	12	NA	9
Winkler et al. (2022) ⁶	Prospective Cohort, II	203	1.8:1	34 ± 12.9	NR	NR	17	NA
Xie et al. (2006) ⁷	Case Series, IV	10	4:1	34	NR	NR	NA	8
Zhao et al. (2006) ⁸	Case Series, IV	12	3:1	27	3	9	NA	10
Zhao et al. (2008) ⁹	Case Series, IV	21	2.5:1	27	7	14	NA	10

LOE level of evidence; NR not reported; NA not applicable

- 7 studies included³⁻⁹, 1 study excluded from analysis due to heterogeneity⁶
- 6 studies analyzed^{3,4,5,7,8,9}
- 97 patients with mean age of 28.3 years and male:female ratio 3.85:1 included in final analysis

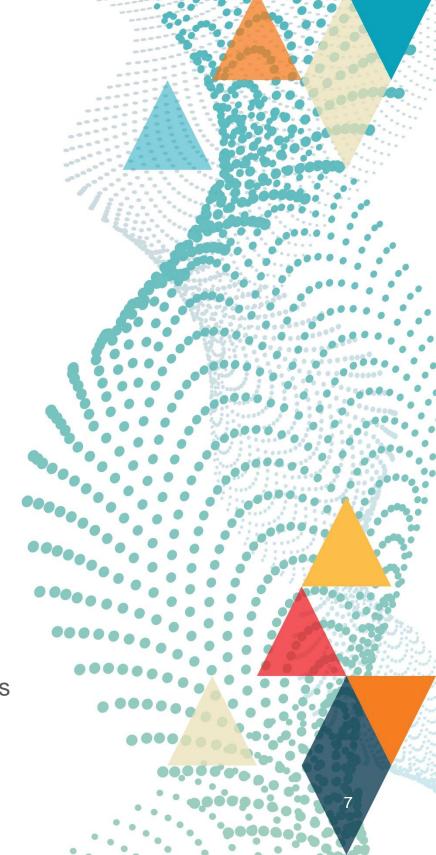


Table 2 Graft Characteristics and Fixation

Author (year)	ACL Graft Harvest, Type	ACL Fixation	PCL Graft Harvest, Type	PCL Fixation
Gupta et al. (2021)3	BTB, Autograft	Aperture	Hamstrings Autograft	Aperture
Huang et al. (2010)4	LARS, Artificial	Aperture	LARS Artificial	Aperture
Shi et al. (2008) ⁵	Achilles, Allograft	Aperture	Achilles Allograft	Aperture
Winkler et al. (2022)6	NR	NR	NR	NR
Xie et al. (2006)7	BTB, Allograft	Aperture	BTB Allograft	Aperture
Zhao et al. (2006)8	ST, Autograft	Suspensory	STG Autograft	Suspensory
Zhao et al. (2008)9	STG, Autograft	Suspensory	STG Autograft	Suspensory

ACL anterior cruciate ligament; PCL posterior cruciate ligament; BTB bone-patellar-tendon-bone; LARS Ligament Advanced Reinforcement System; ST semitendinosus; STG semitendinosus and gracilis; NR not recorded

 Hamstrings autograft was the most popular graft choice for both ACL and PCL reconstruction

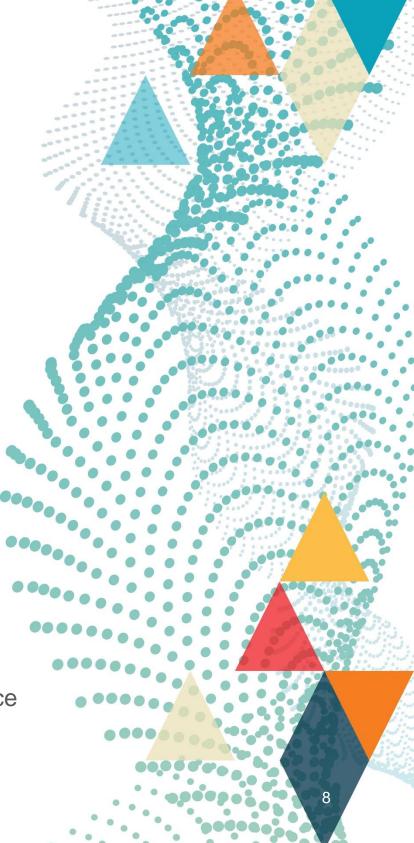
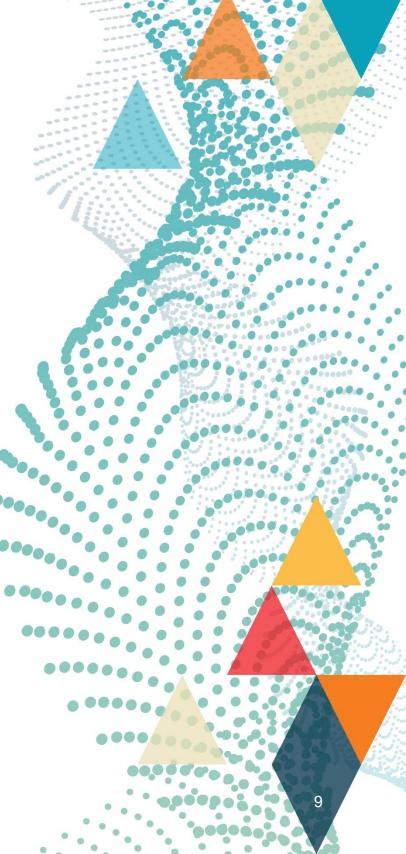


Table 3 Reported Study Outcomes

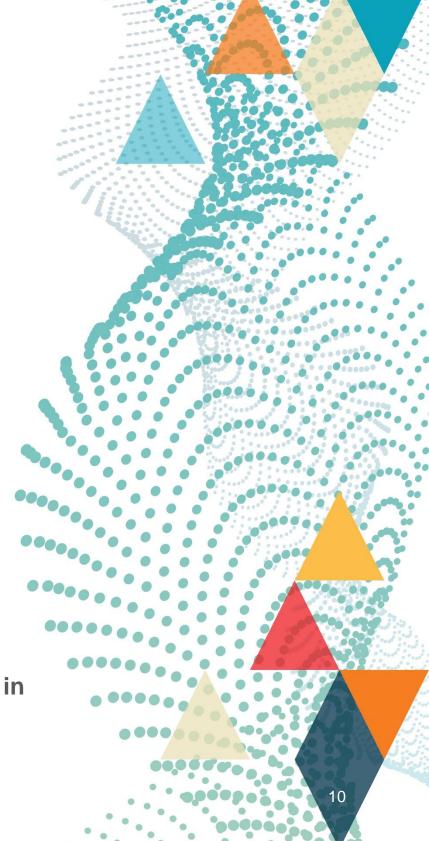
Author (year)	Sample size	CPM	Return to sport	Post- operative flexion degree ROM, degrees	KT-1000 at 25 degrees, mm	KT-1000 at 70 degrees, mm	KOOS score	Post- operative Lysholm score	Pre-injury Tegner score	Post- operative Tegner score	Post- operative IKDC Grades A:B:C	Complications, Type (n, patients)
Gupta et al. (2021) ³	21	NR	NR	NR	NR	NR	NR	78.20 ± 7.62	6.72 ± 2.18	5.82 ± 1.90	4:12:5	Infection (1) ROM < 120 (3)
Huang et al. (2010) ⁴	18	NR	10, cohort unspecified	NR	NR	NR	NR	85.5 ±2.3	NR	NR	6:10:2	NR
Shi et al. (2008) ⁵	15	Pre-op & post- op	13	144	4.8, anterior- posterior	4.2, anterior- posterior	NR	90 ± 4	NR	NR	9:5:1	Effusion (1)


Winkler et al. (2022) ⁶	203	NR	NR	NR	NR	NR	Reported	NR	NR	NR	NR	NR
Xie et al. (2006) ⁷	10	Post-op only	8	128.38	<2 to 10, anterior laxity	2 to 10, difference in range of motion	NR	89.8 ± 3.4	6.9 ± 1.7	5.5 ± 1.6	4:5:1	NR
Zhao et al. (2006) ⁸	12	NR	NR	143 ± 3.7	0 to 7, anterior laxity	0 to 7, anterior- posterior laxity 0-4, posterior sag	NR	92.3 ± 3.1	6.8 ± 0.6	6.6 ± 0.8	7:4:1	Arthrofibrosis (8) Cyst (1) Hematoma (2)
Zhao et al. (2008) ⁹	21	Pre-op only	2	>120 in acute injuries	2.5±2.7, anterior- posterior	2.1±1.7, anterior- posterior	NR	91.9 ± 4.2	6.2 ± 1.8	5.0 ± 1.9	13:7:1	NR

CPM continuous passive motion; ROM range of motion; KOOS Knee injury and Osteoarthritis Outcome Score; IKDC International Knee Documentation Committee; NR not reported

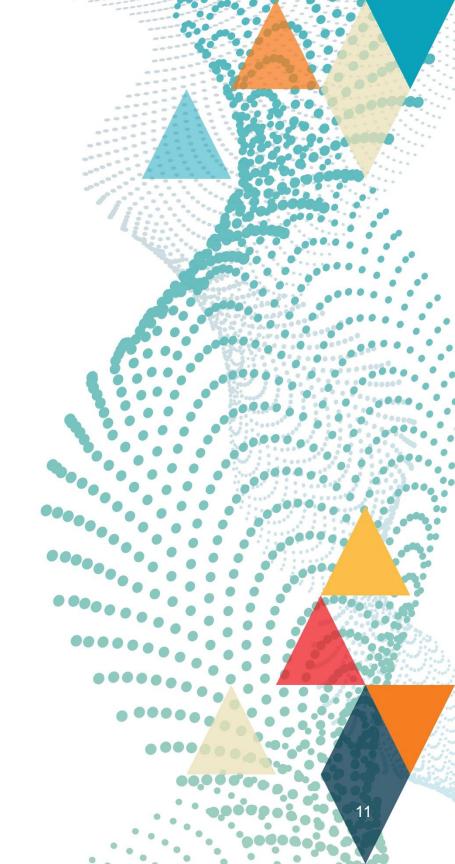
Winkler et al.⁶ excluded due to heterogeneity

- 6 studies reported postoperative Lysholm and IKDC grades^{3,4,5,7,8,9}
- 4 studies reported pre-injury and postoperative Tegner scores^{3,7,8,9}


Table 4 Weighted Means of Commonly Reported Outcomes

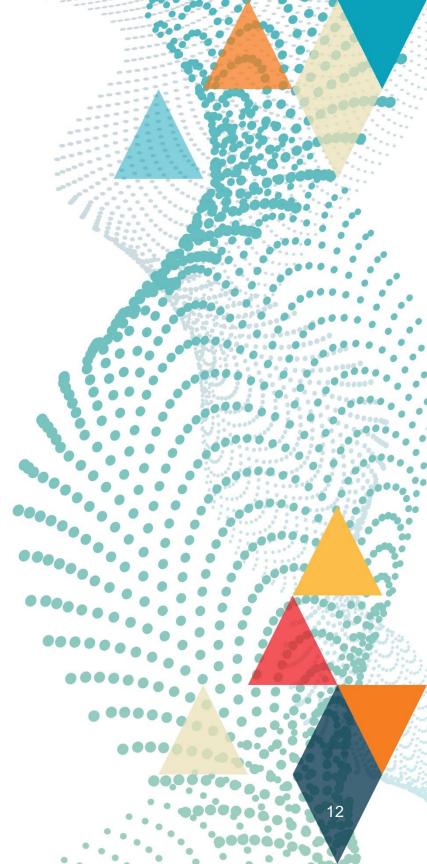
Post-operative outcome	Studies (n)	Random-effects Mean (95% CI)
Lysholm score	6	88.0 (83.9, 92.2)
IKDC Grade A	6	0.44 (0.28, 0.60)
IKDC Grade B	6	0.44 (0.34, 0.54)
IKDC Grade A or B (vs Grade C)	6	0.91 (0.86, 0.97)
Tegner score	4	5.8 (5.1, 6.5)
Change in pre-injury to postoperative Tegner score	4	-0.74 (1.38, -0.09)

IKDC International Knee Documentation Committee Change in pre-injury to postoperative Tegner score p=0.025


- A Lysholm score of 88.0 indicates patients reported good ADLs postoperatively
- 91% of patients had a IKDC Grade A (normal) or Grade B (nearly normal) knee postoperatively
- A Tegner score of 5.8 indicates patients were able to perform some level of heavy labour with variance in sport¹⁰
- There was a 0.74 decrease from pre-injury to postoperative Tegner scores

Conclusion

- Isolated single-stage bicruciate ligament reconstruction without associated collateral ligament, posterolateral, or posteromedial repair or reconstruction have favourable postoperative Lysholm scores, Tegner activity scores, and IKDC grades
- Patients report lower postoperative Tegner scores compared to preinjury scores suggesting that they do not return to the same level of activity as their pre-injury state



References

- 1- Ponkilainen, V., Kuitunen, I., Liukkonen, R., Vaajala, M., Reito, A., & Uimonen, M. (2022). The incidence of musculoskeletal injuries: a systematic review and meta-analysis. *Bone & joint research*, 11(11), 814–825. https://doi.org/10.1302/2046-3758.1111.BJR-2022-0181.R1
- 2- Moatshe, G., Dornan, G. J., Løken, S., Ludvigsen, T. C., LaPrade, R. F., & Engebretsen, L. (2017). Demographics and Injuries Associated With Knee Dislocation: A Prospective Review of 303 Patients. Orthopaedic journal of sports medicine, 5(5), 2325967117706521. https://doi.org/10.1177/2325967117706521
- 3- Gupta, R., Singhal, A., Kapoor, A., David Masih, G., & Jhatiwal, S. (2020). Similar functional outcomes of arthroscopic reconstruction in patients with isolated Posterior Cruciate Ligament (PCL) and combined Anterior Cruciate Ligament (ACL) and PCL tears. *Journal of clinical orthopaedics and trauma*, *16*, 65–69. https://doi.org/10.1016/j.jcot.2020.12.008
- 4- Huang, J. M., Wang, Q., Shen, F., Wang, Z. M., & Kang, Y. F. (2010). Cruciate ligament reconstruction using LARS artificial ligament under arthroscopy: 81 cases report. *Chinese medical journal*, *123*(2), 160–164.
- 5-Shi, D. H., Cai, D. Z., Wang, K., Rong, L. M., & Xu, Y. C. (2008). Concurrent arthroscopic bicruciate ligament reconstruction using Achilles tendon-bone allografts: experience with 15 cases. Chinese journal of traumatology = Zhonghua chuang shang za zhi, 11(6), 341–346. https://doi.org/10.1016/s1008-1275(08)60069-3
- 6- Winkler, P. W., Zsidai, B., Narup, E., Kaarre, J., Horvath, A., Sansone, M., Svantesson, E., Senorski, E. H., Musahl, V., & Samuelsson, K. (2023). Sports activity and quality of life improve after isolated ACL, isolated PCL, and combined ACL/PCL reconstruction. *Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA*, 31(5), 1781–1789. https://doi.org/10.1007/s00167-022-07060-w
- 7- Xie, F., Yang, L., Guo, L., Dai, C., & Han, X. S. (2007). A follow-up study of arthroscopic combined reconstruction of anterior and posterior cruciate ligaments with allograft patellar tendon. *Chinese journal of traumatology = Zhonghua chuang shang za zhi*, 10(6), 334–338.
- 8-Zhao, J., He, Y., & Wang, J. (2006). Simultaneous arthroscopic reconstruction of the anterior and posterior cruciate ligaments with autogenous hamstring tendons. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association, 22(5), 497–504. https://doi.org/10.1016/j.arthro.2005.12.031
- 9- Zhao, J., Huangfu, X., He, Y., Yang, X., & Zhu, Y. (2008). Simultaneous double-bundle anterior cruciate ligament and posterior cruciate ligament reconstruction with autogenous hamstring tendons. *Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association*, 24(11), 1205–1213. https://doi.org/10.1016/j.arthro.2008.06.018
- 10- Kostogiannis, I., Ageberg, E., Neuman, P., Dahlberg, L., Fridén, T., & Roos, H. (2007). Activity level and subjective knee function 15 years after anterior cruciate ligament injury: a prospective, longitudinal study of nonreconstructed patients. *The American journal of sports medicine*, 35(7), 1135–1143. https://doi.org/10.1177/0363546507299238

