

Comparative Clinical and Radiographic Outcomes of Particulated Juvenile Articular Cartilage Implantation in Shouldered and Unshouldered Patella Cartilage Lesions

Ryann A. Davie¹ MD, Brittany M. Ammerman¹ MD, Bennett E. Propp¹ BS, Natalie K. Pahapill¹ BS, Erick M. Marigi¹ MD, William A. Marmor¹ MD, Kiera A. Kingston¹ MD, Simone Gruber¹, Alissa J. Burge¹ MD, Audrey Wimberly¹ MPH, Joseph T. Nguyen¹ MPH, Elizabeth R. Dennis² MD, MS, Beth E. Shubin Stein¹ MD

- 1. Hospital for Special Surgery, New York, New York, U.S.A.
- 2. Icahn School of Medicine at Mount Sinai Hospital, New York, New York, U.S.A.

Disclosures

There is nothing to disclose that pertains to this particular study.

General Author Disclosures:

Beth E. Shubin Stein: Arthrex: Paid consultant/speaker; Conmed: Paid consultant, Research support; OrthopaedicsToday: Editorial Board; AJSM: Publishing board; AOSSM/OREF/AAOS: Multicenter grant

Elizabeth R. Dennis: Conmed: Paid consultant, ISAKOS: Committee Member

Background

- Particulated juvenile articular cartilage (PJAC) has demonstrated promising early results in the treatment of symptomatic articular defects of the patella.
- However, uncertainty exists regarding the stability of this cell-based technique for lesions that are not well-contained or shouldered.

Purpose

 This study aims to compare clinical and radiological outcomes of PJAC in patients with shouldered versus unshouldered full-thickness cartilage defects of the patella.

Methods

- A retrospective review of the prospectively collected institutional knee registry was conducted on patients treated with PJAC for full-thickness symptomatic patellar cartilage lesions between March 2014 and August 2019.
- Cartilage defects were graded by the Outerbridge classification and characterized arthroscopically as shouldered or unshouldered.

Shouldered

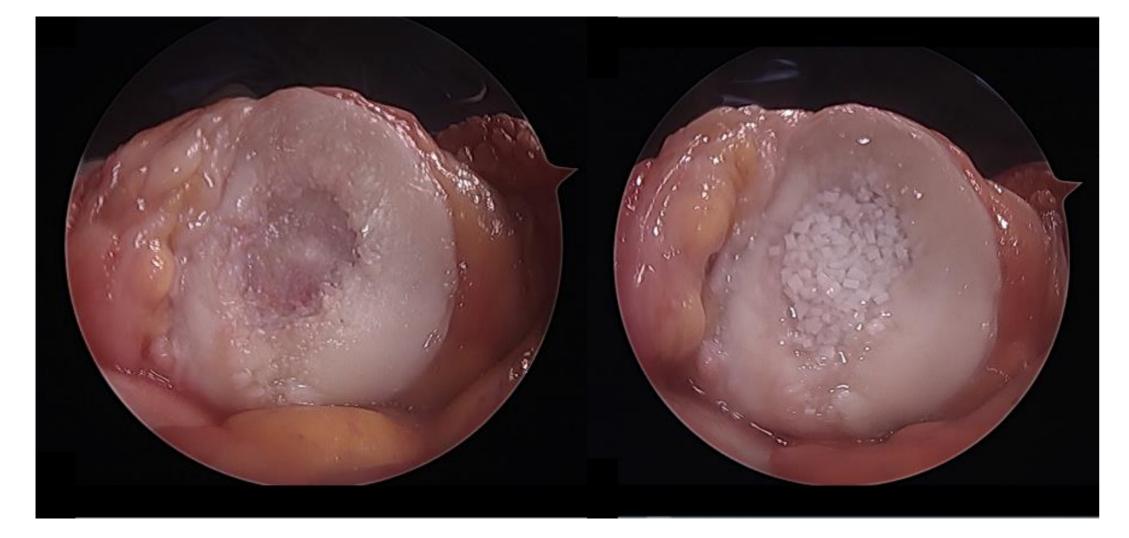


Figure 1a. Shouldered patellar cartilage defect Figure 1b. Shouldered patellar cartilage defect intra-operatively after treatment with PJAC

Unshouldered

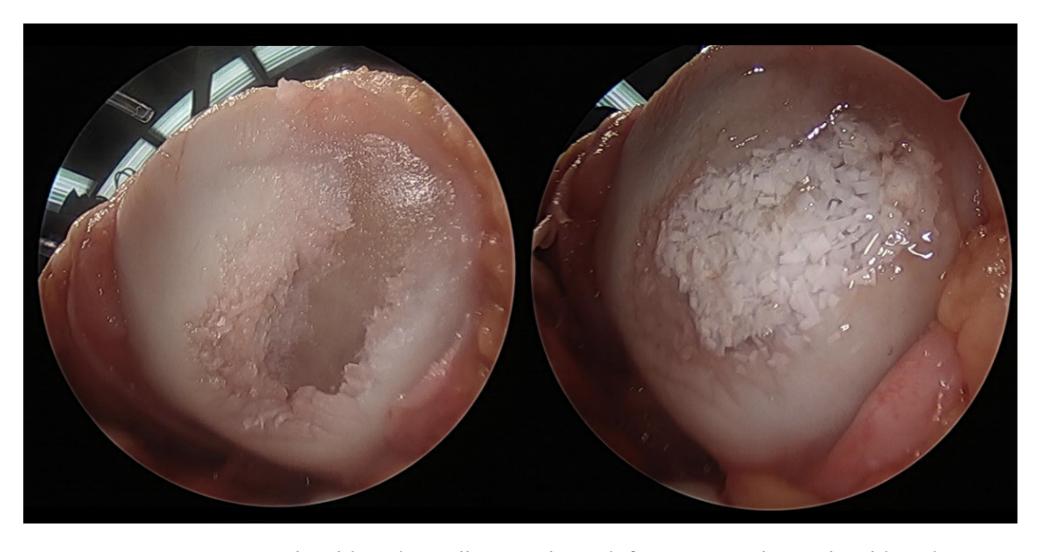
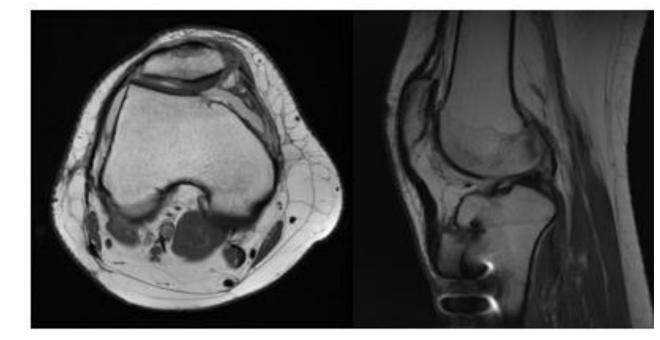
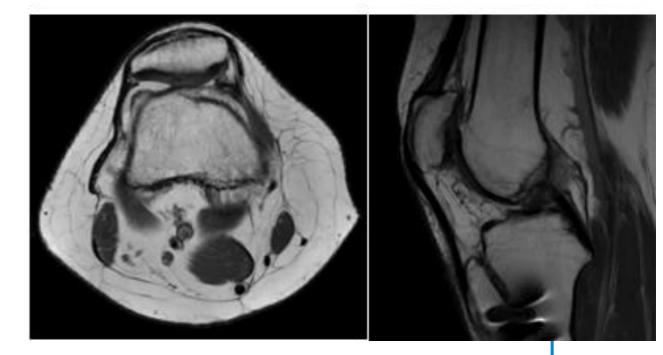


Figure 2a. Unshouldered patellar cartilage defect Figure 2b. Unshouldered patellar cartilage defect intra-operatively after treatment with PJAC


Methods


- Patient-reported outcome measures (PROMs) were obtained preoperatively and at 1-year, 2-year, and final follow-up post-operatively.
- Post-operative MRI studies were read by a musculoskeletal fellowship-trained radiologist, characterizing the percentage of fill based on both coronal and sagittal images: 0%-33%, 34%-66%, or 67%-100%.

0-33%

34-66%

67-100%

Results: Patient Characteristics

	Entire Cohort	Shouldered	Unshouldered	D
Variable	N = 64	N = 32	N = 32	Р
Laterality				.613
Left	27 (42.2%)	12 (37.5%)	15 (46.9%)	
Right	37 (57.8%)	20 (62.5%)	17 (53.1%)	
Sex				> .999
Female	47 (73.4%)	24 (75.0%)	23.00 (71.9%)	
Male	17 (26.6%)	8 (25.0%)	9.00 (29.1%)	
Age (years)	26.3 ± 7.6	26.1 ± 7.6	26.5 ± 7.9	.851
Height (in)	67.7 ± 4.0	67.8 ± 4.0	67.6 ± 4.2	.957
Weight (lbs)	158.3 ± 31.4	165.1 ± 31.5	151.8 ± 31.8	.239
BMI mg/kg ²	25.5 ± 4.9	25.7 ± 4.3	25.3 ± 5.5	.526
Symptom Duration (Years)	7.6 ± 8.8	5.3 ± 7.1	10.1 ± 9.9	.023
Injury Mechanism				> .999
Non-Contact	59 (92.2%)	28 (90.3%)	27 (93.1%)	
Contact	5 (7.8%)	3 (9.7%)	2 (6.9%)	
Tourniquet Time (minutes)	78.6 ± 19.4	78.0 ± 19.7	79.2 ± 19.8	.815
Prior Knee Surgery	24 (37.5%)	7 (21.9%)	17 (53.1%)	.019
Follow-up (years)	2.8 ± 1.7	3.0 ± 1.7	2.5 ± 1.5	0.2882

Values presented as mean \pm standard deviation or n (%) unless otherwise indicated.

	Shouldered	Unshouldered	D
Variable	N = 32	N = 32	P
Percent Fill			.604
0 - 33%	6 (18.8%)	8 (25.0%)	
34 - 66%	4 (12.5%)	5 (15.6%)	
67 - 100%	22 (68.8%)	19 (59.4%)	
Latest post-Operative MRI	110100	12 1 17 1	.240
Time Point (months)	14.8 ± 8.0	12.4 ±7.1	

 Radiographically, shouldered and unshouldered defects demonstrated similar rates of cartilage fill on postoperative MRIs (p = .604)

Results: Patient Reported Outcomes

Patient-Reported Outcome Measurements from Baseline to 2-year follow-up

	Baseline (N = 64)	2-year follow-up (N = 64)	P Baseline to 2-year follow-up
KOOS QOL	23.1 ± 19.5	65.3 ± 20.3	< .001
KOOS-PS	9.1 ± 10.0	10.3 ± 7.3	.384
HSS Pedi-FABS	41.2 ± 16.4	76.0 ± 14.1	< .001
IKDC	34.8 ± 15.1	13.9 ± 10.2	< .001
Kujala	52.0 ± 19.2	87.5 ± 10.0	< .001
SF-12 Mental Health	48.9 ± 12.2	53.4 ± 7.7	.015
SF-12 Physical Health	39.5 ± 9.9	51.5 ± 7.7	< .001
VR-12 Mental Health	49.4 ± 11.4	54.0 ± 7.3	.019
VR-12 Physical Health	40.7 ± 10.2	52.8 ± 7.1	< .001
VR6D	0.66 ± 0.14	0.79 ± 0.10	< .001

The entire cohort showed a statistically significant improvement from baseline to 2 years in KOOS QOL, HSS Pedi Fabs, IKDC, Kujala, SF-12 Physical health, VR-12 Physical health, and VR6D (all P < .001) with the exception of KOOS-PS, which showed no significant difference (P=0.34)

Values presented as mean ± standard deviation

Results: Patient Reported Outcomes

Change in Patient-Reported Outcome Measures from Baseline to 2-years

	Shouldered (N = 32)	Unshouldered (N = 32)	P
KOOS QOL	41.1 ± 21.9	37.0 ± 24.1	.651
KOOS-PS	-27.2 ± 14.8	-10.7 ± 17.6	.015
HSS Pedi-FABS	-2.8 ± 9.5	-2.54 ± 10.4	.923
IKDC	35.0 ± 24.5	29.0 ± 13.2	.410
Kujala	44.3 ± 26.3	26.9 ± 17.8	.039
SF-12 Mental Health	6.3 ± 12.2	3.1 ± 8.8	.519
SF-12 Physical Health	14.2 ± 11.6	7.5 ± 7.6	.151
VR-12 Mental Health	5.3 ± 11.0	3.5 ± 7.7	.689
VR-12 Physical Health	14.9 ± 11.6	6.6 ± 8.8	.098
VR6D	0.16 ± 0.17	0.07 ± 0.09	.196

 Overall, there were no significant differences between shouldered and unshouldered lesions in baseline and 2-year PROMS. However, the shouldered group had a higher improvement from baseline to 2 years in KOOS-PS and Kujala scores

Values presented as mean ± standard deviation

Conclusion

- PJAC implantation led to significantly improved PROMs for both shouldered and unshouldered patellar cartilage lesions over time.
- Radiographically, shouldered and unshouldered defects demonstrated similar rates of cartilage fill on postoperative MRIs.
- Most PROMs were equivalent between shouldered and unshouldered patellar cartilage defects, suggesting similar efficacy of PJAC for these defects.
- Thus, unshouldered lesions can be addressed in a similar fashion to shouldered lesions when implementing PJAC.

References

- 1. Dekker TJ, Steele JR, Federer AE, Easley ME, Hamid KS, Adams SB. Efficacy of Particulated Juvenile Cartilage Allograft Transplantation for Osteochondral Lesions of the Talus. Foot Ankle Int. 2018;39(3):278-283. doi:10.1177/1071100717745502
- 2. DeSandis BA, Haleem AM, Sofka CM, O'Malley MJ, Drakos MC. Arthroscopic Treatment of Osteochondral Lesions of the Talus Using Juvenile Articular Cartilage Allograft and Autologous Bone Marrow Aspirate Concentration. *Journal of Foot and Ankle Surgery*. 2018;57(2):273-280. doi:10.1053/j.jfas.2017.09.009
- 3. Grawe B, Burge A, Nguyen J, et al. Cartilage Regeneration in Full-Thickness Patellar Chondral Defects Treated with Particulated Juvenile Articular Allograft Cartilage: An MRI Analysis. Cartilage. 2017;8(4):374-383. doi:10.1177/1947603517710308
- 4. LeBrun DG, Nwachukwu BU, Buza SS, et al. Particulated Juvenile Articular Cartilage and Matrix-Induced Autologous Chondrocyte Implantation Are Cost-Effective for Patellar Chondral Lesions. Arthroscopy Journal of Arthroscopic and Related Surgery. 2022;38(4):1252-1263.e3. doi:10.1016/j.arthro.2021.08.038
- 5. Gomoll AH, Gillogly SD, Cole BJ, et al. Autologous Chondrocyte Implantation in the Patella. *Am J Sports Med*. 2014;42(5):1074-1081. doi:10.1177/0363546514523927
- 6. von Keudell A, Han R, Bryant T, Minas T. Autologous Chondrocyte Implantation to Isolated Patella Cartilage Defects. Cartilage. 2017;8(2):146-154. doi:10.1177/1947603516654944
- 7. Adkisson HD, Milliman C, Zhang X, Mauch K, Maziarz RT, Streeter PR. Immune evasion by neocartilage-derived chondrocytes: Implications for biologic repair of joint articular cartilage. Stem Cell Res. 2010;4(1):57-68. doi:10.1016/j.scr.2009.09.004
- 8. Alizadeh Sardroud H, Wanlin T, Chen X, Eames BF. Cartilage Tissue Engineering Approaches Need to Assess Fibrocartilage When Hydrogel Constructs Are Mechanically Loaded. Front Bioeng Biotechnol. 2021;9:787538. doi:10.3389/fbioe.2021.787538
- 9. Asik M, Ciftci F, Sen C, Erdil M, Atalar A. The Microfracture Technique for the Treatment of Full-Thickness Articular Cartilage Lesions of the Knee: Midterm Results. Arthroscopy Journal of Arthroscopic and Related Surgery. 2008;24(11):1214-1220. doi:10.1016/j.arthro.2008.06.015
- 10.Brown WE, Potter HG, Marx RG, Wickiewicz TL, Warren RF. Magnetic Resonance Imaging Appearance of Cartilage Repair in the Knee. Clin Orthop Relat Res. 2004;422:214-223. doi:10.1097/01.blo.0000129162.36302.4f
- 11. Buckwalter JA, Bowman GN, Albright JP, Wolf BR, Bollier M. Clinical outcomes of patellar chondral lesions treated with juvenile particulated cartilage allografts. *Iowa Orthop J.* 2014;34:44-49.
- 12. Marmor WA, Dennis ER, Buza SS, et al. Outcomes of Particulated Juvenile Articular Cartilage and Association With Defect Fill in Patients With Full-Thickness Patellar Chondral Lesions. Orthopaedic Journal of Sports Medicine. 2024;12(6). doi:10.1177/23259671241249121