

Multicenter Outcomes After Hip Arthroscopy:

Seven Years Later, Where Are We Now? Epidemiology & Experience From The MASH Study Group

Robert B Baldwin, BA; Samarth V Menta, BA; Mark Kurapatti, BS; Dominic S. Carreira, MD; Anil S. Ranawat, MD

Disclosure of Interest

HSS educational activities are carried out in a manner that serves the educational component of our Mission.

As faculty we are committed to providing transparency in any/all external relationships prior to giving an academic presentation.

ANIL RANAWAT, MD
Hospital for Special Surgery
New York, New York

I DO have a financial relationship with: Smith and Nephew, Bodycad, Ranfac/Marrow Cellution, Overture, CONMED and Moximed

Outline

- Background
- Hypothesis
- Methods
- Results
- Discussion
- Conclusion
- References

Background

- Hip arthroscopy is rapidly growing for conditions like femoroacetabular impingement (FAI), labral tears, and cartilage damage
 - Delays total hip arthroplasty
- Epidemiologic data is essential to understand trends and outcomes
- Unclear how patient demographics are evolving in face of rapidly growing knowledge base

Hypothesis

• The patient population undergoing hip arthroscopy will have a lower average Body Mass Index (BMI), younger age, less severe reported symptoms at the time of surgery, and shorter preoperative symptom duration than 2017 data reported.

Methods

- 7,570 patients from 10 U.S. centers enrolled between 2014–2023
- Demographics, PROMs, symptom duration, imaging, and surgical findings
- Variability in data collection tools and surgeon compliance affected the functional sample size
 - Variable-specific denominators during analysis

Demographics

Demographic	Mean	Minimum	Maximum
Age, y	33.9	11.4	83.3
Height, in	67.2	55	81
Weight, lb	158.2	80	340
BMI	24.5	14.8	44.9
<u>Sex</u>			
Female	56.8%		
Male	28.3%		
Not Recorded	15.0%		
Laterality			
Right	54.10%		
Left	45.90%		
Smoker	2%		

PROMs

Baseline with 2 Year Follow-Up	Baseline Mean	Minimum	Maximum	2 Yr Mean
Modified Harris Hip Score	56.8	23	89	77.5
Hip Outcome Score				
ADLs	66.1	13.2	100	87.7
Sports	39.8	0	94.4	74.3
VAS	46.5	0	85	18.86
International Hip Outcome Tool	33.8	0	99	72.8
PROMIS				
Anxiety	54.9	32.8	75.5	50.8
Depression	49.3	35.1	69.6	46.7
Pain Interference	62.1	38.7	77.8	52
Physical Function	40.6	23.2	72.7	49.4

Diagnoses

Labral Pathology	3832	98.2%	
Tear Complexity			
Mild	932	24	
Moderate	1626	42	
Severe	1073	28	
Not Specified	201	6	
Labral Bruising	1651	43.1	
Labral Degeneration	1139	29.7	
Other			
Ligamentum Teres Tear	394	10.3	
Gluteus minimus/maximus tear	78	2	
Septic Arthritis	2	0.1	
Femoral Impingement cyst	21	0.5	
Acetabular Bone Cyst	57	4.2	

Surgical Details

Procedure	n	%
Labral Surgery	3832	98.8
Repair	2860	74.6
Reconstruction	811	22
Combination	148	3.8
Other		
Femoroplasty	3472	89.5
Synovectomy	2619	67.5
Acetabuloplasty	1298	33.5
Acetabular Chondroplasty	1083	27.9
Femoral Chondroplasty	163	4.2
Trochanteric Bursectomy	159	4.1
Subspinous	142	3.7
Acetabula/Femoral Microfracture	102	2.6
Psoas Release	58	1.5
Core Decompression	11	0.3

Comparison

- Isolated pincer impingement sharply declined
 - ~30% to ~2%
- Less pre-operative mechanical symptoms
 - 23.4% vs. 38.1%
- Arthritis and cartilage damage were less frequent
 - Tonnis grade ≥2 at 1.0% vs 1.5%
- Longer symptom duration before surgery
 - Higher % for 1–2 years compared to 4–12 months
- Patients are younger
 - 33.9 vs 34.6 years
- Patients are lower BMI
 - 24.5 vs 25.9

Discussion

- PROMs improved across the board as expected
 - HOS-ADL, HOS-Sport, iHOT-12, PROMIS, VAS
- Rate of preoperative injections dropped significantly, from 94% in 2017 to 51%, potentially due to data showing injections as post-operative complication risk factors
- Hypothesis
 - Younger patients
 - Lower BMI
 - Less severe pre-operative symptoms
 - Shorter duration of symptoms X

References

- 1. Cvetanovich GL, Chalmers PN, Levy DM, et al. Hip arthroscopy surgical volume trends and 30-day postoperative complications. Arthroscopy. 2016;32(7):1286-1292.
- 2. Peters CL, Aoki SK, Erickson JA, Anderson LA, Anderson AE. Early experience with a comprehensive hip preservation service intended to improve clinical care, education, and academic productivity. Clin Orthop Relat Res. 2012;470(12):3446-3452. doi:10.1007/s11999-012-2549-3
- 3. Siebenrock KA, Peters CL. ABJS Carl T. Brighton workshop on hip preservation surgery: editorial comment. Clin Orthop Relat Res. 2012;470(12):3281-3283. doi:10.1007/s11999-012-2655-2
- 4. Sankar WN, Nevitt M, Parvizi J, et al. Femoroacetabular impingement: defining the condition and its role in the pathophysiology of osteoarthritis. J Am Acad Orthop Surg. 2013;21(Suppl 1). doi:10.5435/JAAOS-21-07-S7
- 5. Poh SY, Hube R, Dienst M. Arthroscopic treatment of femoroacetabular pincer impingement. Oper Orthop Traumatol. 2015;27(6):536-552. doi:10.1007/s00064-015-0400-1
- 6. Groh MM, Herrera J. A comprehensive review of hip labral tears. Curr Rev Musculoskelet Med. 2009;2(2):105-117. doi:10.1007/s12178-009-9052-9
- 7. White BJ, Herzog MM. Labral reconstruction: when to perform and how. Front Surg. 2015;2:27. doi:10.3389/fsurg.2015.00027
- 8. Yen YM, Kocher MS. Chondral lesions of the hip: microfracture and chondroplasty. Sports Med Arthrosc Rev. 2010;18(2):83-89. doi:10.1097/JSA.0b013e3181de1189
- 9. Jordan MA, Van Thiel GS, Chahal J, Nho SJ. Operative treatment of chondral defects in the hip joint: a systematic review. Curr Rev Musculoskelet Med. 2012;5(3):244-253. doi:10.1007/s12178-012-9134-y
- 10. Griffin DW, Kinnard MJ, Formby PM, McCabe MP, Anderson TD. Outcomes of hip arthroscopy in the older adult: a systematic review of the literature. Am J Sports Med. 2017;45(8):1928-1936. doi:10.1177/0363546516667915
- 11. Kivlan BR, Nho SJ, Christoforetti JJ, et al. Multicenter outcomes after hip arthroscopy: epidemiology (MASH study group). What are we seeing in the office, and who are we choosing to treat? Am J Orthop (Belle Mead NJ). 2017;46(1):35-41.
- 12. Bech NH, Kodde IF, Dusseldorp F, et al. Hip arthroscopy in obese, a successful combination? J Hip Preserv Surg. 2016;3(1):37-42. doi:10.1093/jhps/hnv076