

Clinical Outcomes of Double Level Osteotomy for Osteoarthritis with Joint Line Obliquity

Mitsuki Shimizu¹, Hiroshi Nakayama¹, Akira Kawai¹, Ryo Kanto², Shintaro Onishi¹, Tomoya Iseki¹, Shinichi Yoshiya², Toshiya Tachibana¹

¹Dept. of Orthopaedic Surgery, Hyogo Medical University ²Dept. of Orthopaedic Surgery, Nishinomiya Kaisei Hospital

COL

Mitsuki Shimizu, MD

I have no financial conflicts to disclose

Email:mitsuki39029@gmail.com

Hyogo medical University

Dept. of Orthopaedic Surgery

TEL: (+81)798-45-6111

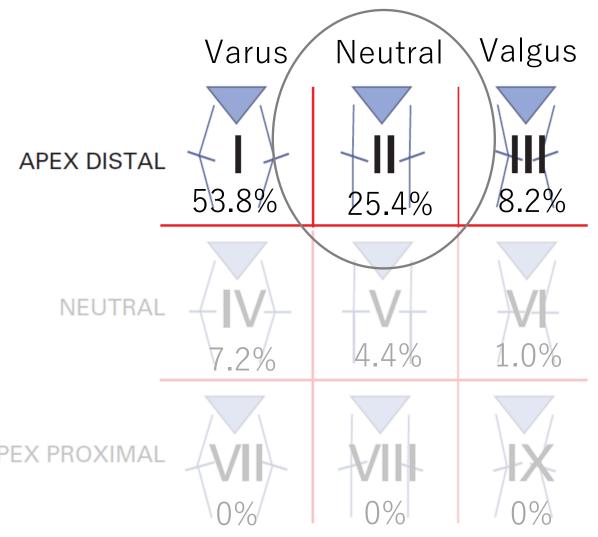
FAX: (+81)798-45-6932

Indication for Double Level Osteotomy (DLO)

Severe varus deformity of the knee

✓ Tibial correction leads to joint line obliquity (JLO)

Deformities are present in both the femur and tibia


- ✓ mechanical lateral distal femoral angle (mLDFA) > 90°
- ✓ mechanical medial proximal tibial angle (mMPTA) < 87°
 </p>

1), 2)

Indication for DLO

CPAK distribution in Japan

- ✓ mLDFA + mMPTA < 177°
- ✓ Even in alignment-neutral knees, medial joint line inclination can lead to OA
- Clinical reports on osteotomy for CPAK type II remain limited

3), 4)

Purpose & Subjects

Purpose

✓ To evaluate the clinical outcomes of DLO in CPAK Type II

<u>Subjects</u>

- ✓ OA knees classified as CPAK Type II
- ✓ Resistant to conservative treatment
- ✓ Underwent DLO at our institution
- ✓ Follow-up > 2years

- √ 9 knees in 8 patients (4 male, 4 female)
- ✓ Mean age:50.4 years

Materials & Methods

Surgical Procedure

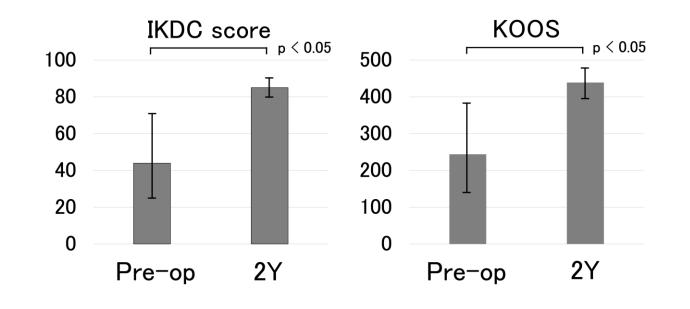
- ✓ Medial close wedge distal femoral osteotomy
- ✓ Medial open wedge distal tuberosity osteotomy

Post-op rehabilitation protocol

- ✓ ROM allowed from post-op day 1
- ✓ Partial weight bearing from 3 weeks post-op
- ✓ Full weight bearing from 6 weeks post-op

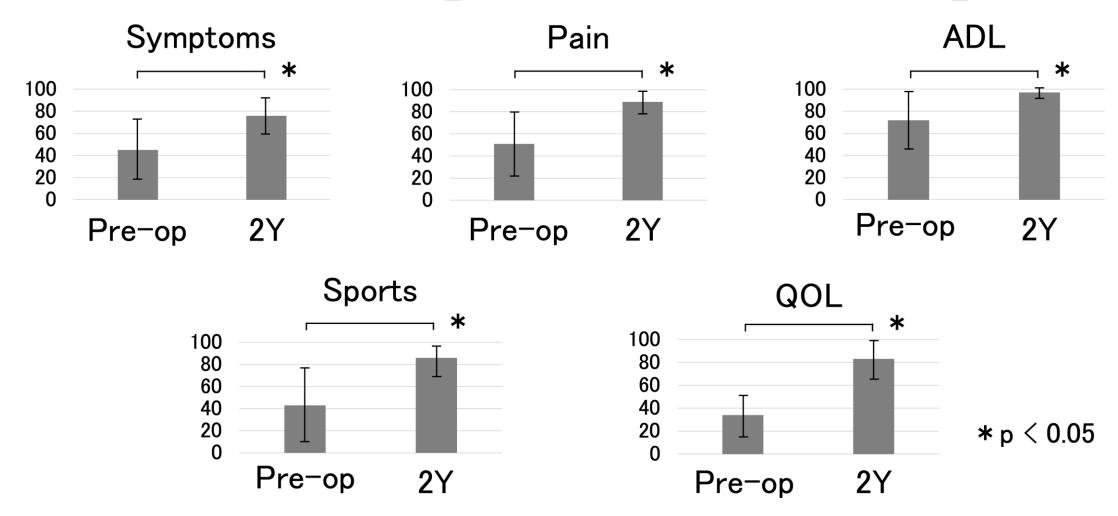
Outcome Measures

- ✓ HKA angle, mLDFA, mMPTA, JLCA
- IKDC, KOOS scores
- ✓ Statistical analysis: Mann-Whitney U test



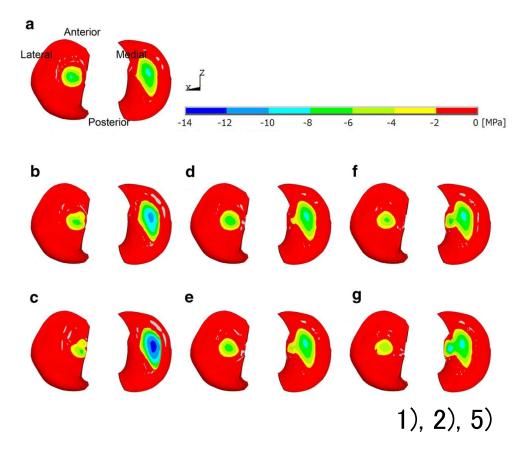
Results [Parameters / IKDC / KOOS]

	Pre-op	2Y
HKA angle	$1.3 \pm 1.9^{\circ}$ varus	$0.5 \pm 1.9^{\circ}$ valgus
mLDFA	$83.9 \pm 1.2^{\circ}$	$87.5 \pm 1.6^{\circ}$
mMPTA	$82.6 \pm 1.7^{\circ}$	$87.4 \pm 1.3^{\circ}$
JLCA	1.5 ± 1.5°	1.6 ± 1.1°



- ✓ The preoperative JLO was corrected and leveled by performing DLO
- ✓ Both IKDC and KOOS scores showed significant postoperative improvement

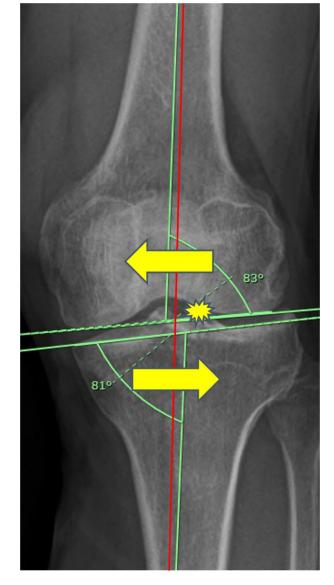
Results [KOOS sub-scores]



Discussion [JLO on Knee Osteotomy]

- ✓ No consensus on preoperative JLO based surgical indication
- ✓ If postoperative JLO is greater than 5°, DLO is recommended to achieve a horizontal joint line

✓ Increased JLO leads to shear forces and pressure on intercondylar eminence


Discussion [DLO for CPAK TypeII]

✓ CPAK Type II knees have JLO

- ✓ JLO induces shear forces and presseure on intercondylar eminence
- ✓ Cartilage on the intercondylar eminence wears down

✓ Develop Knee OA

DLO enables joint line horizontalization while preserving neutral limb alignment

Conclusion

- ✓ DLO for CPAK Type II OA knees with joint line obliquity resulted in favorable outcomes
- ✓ Even in alignment-neutral knees, DLO may be an effective treatment option for CPAK Type II OA

Limitations

√ Small sample size

√ Short follow-up period

References

- 1. ESSKA formal consensus project
- 2. Nakayama H, et al. KSSTA. 2018
- 3. MacDessi, et al. Bone & Joint. 2021
- 4. Toyooka J, et al. Knee Surg. 2022
- 5. Ollivier M, et al. KSSTA. 2023

