A Prospective Study on Muscle Strength Assessment Using Phase Angle from Bioelectrical Impedance Analysis After ACL Reconstruction

Makoto Suruga¹,

Takashi Kozu², Jin Sato², Yoshiyuki Yahagi¹, Hyunho Lee², Yusuke Morimoto³, Kazuyoshi Nakanishi²

- 1) Nihon University Hospital
- Nihon University School of medicine
 - 3) Sports and Orthopaedic Nakano

Conflict of Interest Disclosure (COI)

This study was conducted as a collaborative research project between TANITA Corporation and Nihon University, with research funding provided by TANITA Corporation.

Introduction

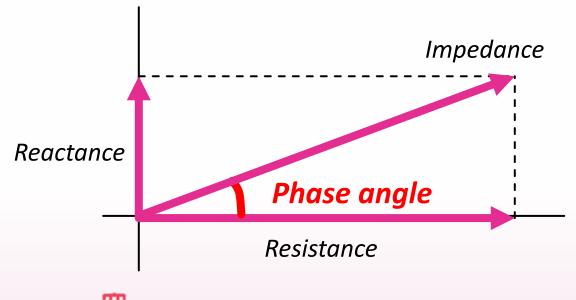
Body composition analyzer

Bioelectrical Impedance Analysis (BIA): Estimating Body Composition

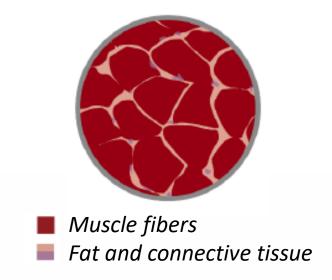
- ✓ Principle:
 - Fat tissue resists electrical current.
 - Fat-free tissue (high in water & electrolytes) conducts electricity easily.
- ✓ Method:
 - 1. A weak electrical current is applied.
 - 2. Impedance (resistance) is measured.
 - Body composition is calculated using regression equations (algorithms) with weight & height.

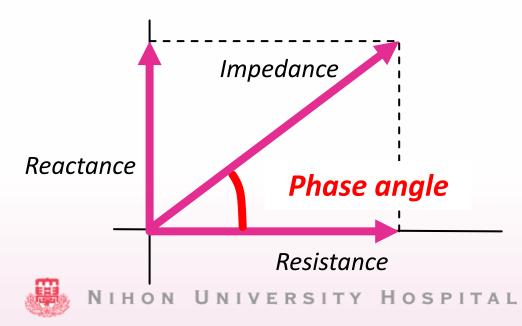
MC-980A-N plus, Tanita Corp.

UNIVERSITY HOSPITAL


https://www.tanita.co.jp/product/business/bodycompositionanalyzer/4094/

Phase angle

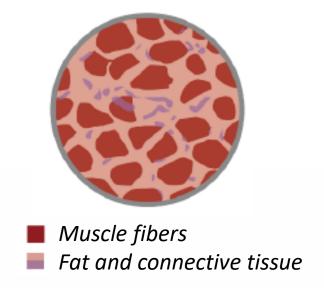

- ✓ Represents *the ratio of resistance to reactance* as an angle.*
- √ Typically measured using a 50 kHz electrical current.

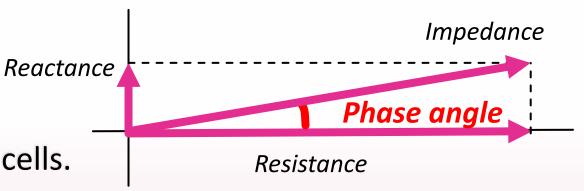

- *Impedance of the Human Body
- Resistance: Opposition to electrical current caused by extracellular and intracellular fluids.
- Reactance: Opposition caused by cell membrane capacitance.

High Phase Angle: Indicator of Muscle Health

- ✓ Higher Phase Angle reflects better muscle condition:
 - Greater number of muscle cells.
 - Thicker muscle fibers.
- ✓ Mechanism:
 - Healthy cells have a higher capacity to store electrical charge in their membranes (capacitance).
 - This increases reactance, resulting in a higher Phase Angle.

Low Phase Angle: Indicator of Reduced Muscle Quality


- ✓ Characteristics of Low Phase Angle:
 - Reduced muscle fiber density due to smaller or fewer muscle cells.
 - Decreased intracellular fluid and smaller cell membrane surface area.


✓ Mechanism:

 Lower capacitance (ability to store electrical charge) reduces reactance, resulting in a lower Phase Angle.

✓Implication:

 Reflects thinner muscle fibers, smaller muscle cells, and fewer muscle cells.

Purpose

✓ Purpose

To determine whether the evaluation of Phase Angle using a body composition analyzer is useful for assessing muscle strength after ACL reconstruction.

- ✓ Hypothesis
 The phase angle results correlate with muscle strength assessment using BIODEX.
- ✓ Study Design:
 Prospective observation study

Materials and methods

✓ Participants:

We included patients who underwent primary arthroscopic ACL reconstruction at our institution between September 2020 and April 2023.

27 patients (21 males, 6 females; mean age: 33.5 years).

✓ Excluded:

Re-injuries and multiple ligament injuries.

Patients with missing data

✓ Evaluation Timeline:

Postoperative assessments at 3, 6, 9, and 12 months.

✓ Measurements:

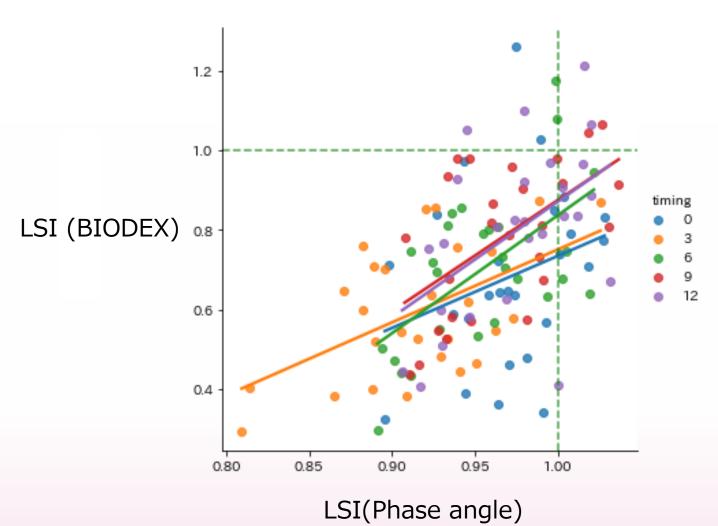
Muscle strength: Knee extension strength at 60° /sec using **BIODEX**.

Phase angle: Measured with BIA (MC-980A-N plus, Tanita).

Limb Symmetry Index (LSI): Calculated for both BIODEX and phase angle.

Results

	Knee extension strength at 60°/sec			Phase angle		
	affected	unaffected	LSI	affected	Unaffected	LSI
pre op	161.8	238.9	0.666	-6.488	-6.725	0.964
3M postop	143.4	238.5	0.597	-6.036	-6.584	0.916
6M postop	173.6	248.1	0.700	-6.293	-6.596	0.953
9M postop	193.7	249.0	0.772	-6.513	-6.744	0.965
12M postop	202.8	255.6	0.796	-6.435	-6.610	0.974


Mean data and Limb Symmetry Index (LSI) for affected and unaffected sides.

*M: month

Correlation between BIODEX and Phase Angle

(Pearson's correlation coefficient)

Correlation coefficient results

Preop : no correlation

3M postop : R=0.528

• 6M postop : R=0.596

9M postop : R=0.591

• 12M postop : R=0.502

Entire period : R=0.541 P<0.05

*Correlation metrics

0.00–0.19: Very weak

0.20-0.39: Weak

0.40-0.59: Moderate

0.60-0.79: Strong

0.80-1.00: Very strong

Discussion

- ✓ The most important finding of this study is that there was a moderate correlation between muscle strength measurement using BIODEX and Phase angle in the LSI.
- ✓ Based on my review of the literature, this appears to be the first study to compare BIODEX measurements and phase angle.
- ✓ Previous studies have demonstrated that phase angle correlates with muscle quality and overall health status, and has been reported as a potential indicator of sarcopenia.¹⁻⁴
- ✓ Based on our findings, bioelectrical impedance analysis may offer a non-invasive and straightforward method for assessing postoperative muscle strength.

Limitation

- ✓ Small sample size
- ✓ Homogeneity of the study population (exclusively Japanese subjects)
- ✓ High number of cases excluded due to missing data
- ✓ BIODEX measurements potentially yielding extremely low values in the presence of pain
- ✓ Possible influence of postoperative edema on the results

Conclusion and Reference

✓ Conclusion

In patients following ACL reconstruction, a moderate correlation was observed between muscle strength measurements using BIODEX and phase angle ratios between affected and unaffected limbs. Phase angle may serve as a potentially useful, non-invasive, and convenient method for postoperative muscle strength assessment.

✓ Reference

- 1. Norman K et al, Clin Nutr, 2012
- 2. Lukaski HC et al, Eur J Clin Nutr, 2013
- 3. Yamada Y, J Gerontol A Biol Sci Med Sci, 2017
- 4. Akamatsu Y et al, J Cachexia Sarcopenia Muscle, 2022